CS 455/555 Intro to Networks and Communications

Applications & Application-Layer Protocols: The Domain Name System

Dr. Michele Weigle Department of Computer Science Old Dominion University mweigle@cs.odu.edu

http://www.cs.odu.edu/~mweigle/CS455-S13

Application-Layer Protocols Outline

- The architecture of distributed systems
 - » Client/Server computing
 - » P2P and Hybrid computing
- The programming model used in construction local ISP distributed systems
 - » Socket programming
- Example client/server systems and their application-layer protocols
 - » The World-Wide Web (HTTP)
 - » Reliable file transfer (FTP)
 - » E-mail (SMTP & POP)
 - » Internet Domain Name System (DNS)

applicatior

transport network

> <u>link</u> physical

> > wor

🚇 🔊

Application-Layer Protocols The Domain Name System (DNS)

- Computers (hosts, routers) connected to the Internet have two forms of names:
 - » IP address a 32 bit identifier used for addressing hosts and routing data to them
 - » Hostname an ASCII string used by applications
- The DNS is an Internet-wide *service* that provides mappings between IP addresses and hostnames
 - » The DNS is a distributed database implemented in a hierarchy of name servers
 - » The DNS is also an application-layer protocol
- Hosts and routers use name servers to *resolve* names (address/ name translation)
 - » Name resolution is an *essential* Internet function implemented as application-layer protocol

The Domain Name System

Services

Host Aliasing

- » canonical hostname: relay1.west-coast.enterprise.com
- » aliases: enterprise.com, www.enterprise.com

Mail Server Aliasing

- » email address: bob@hotmail.com
- » mail server: relay1.west-coast.hotmail.com

Load Distribution

- » set of IP addresses associated with 1 canonical hostname
 (e.g., cnn.com)
- » server response with whole set, but rotates ordering

The Domain Name System

Name Hierarchy in DNS

- *hostname* = "dot" separated concatenation of domain names along path toward the root
 - » odu.edu » atria.cs.odu.edu
 - » cs.odu.edu

Name Hierarchy in the DNS Top level domains

• Generic domains:

- » .com, .org, .net, .edu, .gov, .mil, .int
- » .biz, .info, .name, .pro

Special sponsored names

» .aero, .coop, .museum

Country code domains

» .uk, .de, .jp, .us, etc.

- Applications need IP address to open connection
- Use DNS to find the IP address given a hostname
- Steps:
 - 1. Application invokes DNS (gethostbyname() in C)
 - 2. DNS application in host sends query into network (UDP port 53)
 - 3. DNS application in host receives reply with IP address (after some delay)
 - 4. IP address passed up to the application

DNS is a black box as far as the application is concerned.

The Domain Name System Designing a distributed service

Why not centralize the DNS
 » A server process on a big, well connected supercomputer?

Centralized systems do not scale!

- » Poor reliability: centralized = single point of failure
- » Poor performance: centralized = "remote access" for most users
- » Difficult to manage: centralized = all traffic goes to one location, a large staff has to be present to handle registrations
- A centralized system is not politically feasible in an international network

Designing a Distributed Service

DNS Name Servers

- No server has every hostname-to-IP address mapping
- Authoritative name server:
 - » Every host is registered with at least one authoritative server that stores that host's IP address and name
 - » The authoritative name server can perform name/address translation for that host's name/address

Local authoritative name servers:

- » Each ISP, university, company, has a local (default) name server authoritative for its own hosts
- » Resolvers always query a name server local to it to resolve any host name

DNS Name Servers

Root name servers

A root name server is contacted when a local name server can't resolve a name

- » The root server either resolves the name or provides pointers to authoritative servers at lower level of name hierarchy
- There are 13 root name servers worldwide

http://root-servers.org/

» a.root-servers.org – m.root-servers.org

DNS Name Servers Generic TLD servers (Verisign Corp.)

12 independent sites

.com, org, .net server locations (separated from root servers)

DNS Name Servers

Using a server hierarchy for resolving names

Root DNS server -servers.net • Host *atria.cs.odu*.edu wants to know the IP address of www.yahoo.com TLD DNS server Authoritative DNS server » atria contacts its local DNS server dns.yahoo.com cruzan.cs.odu.edu • To resolve a non-local name, the local name 2 server queries the root server 5 The root server responds with the TLD for .com Target host • The local DNS server contacts the TLD www.yahoo.com server Local DNS server cruzan.cs.odu.edu • The local DNS server contacts the authoritative server dns.yahoo.com 8 Results feed back to atria • *atria* can now use the IP address of www.yahoo.com to make a connection **Requesting host** atria.cs.odu.edu

DNS Name Servers Recursive vs. Iterative Queries

- The DNS supports two paradigms of queries:
 - » Recursive queries
 - » Iterative queries
- Recursive queries place the burden of name resolution (recursively) on the contacted server
- In an iterated query the contacted server simply replies with the name of the server to contact
 - » "I don't know; trying asking X"

DNS Name Servers

Recursive vs. Iterative Queries

- Any query can be recursive or iterative
- Iterative and recursive queries can be combined
- Typically, the query from the requesting host to the local DNS server is recursive and the remaining queries are iterative

DNS Name Servers Caching and updating DNS entries

DNS Name Servers

DNS resource records

RR format: <name, value, type, time_to_live>

- The DNS is a distributed database storing resource records (RRs)
- Type = A
 - » name is a hostname
 - » value is hostname's IP address
- Type = NS
 - » name is a domain
 - » value is name of authoritative name server for this domain

◆ Type = CNAME

atria.cs.odu.edu

- » name is an alias name for some "canonical" (the real) name
- » value is canonical name
- Type = MX
 - » value is name of mail server host associated with name

DNS Name Servers DNS resource records / Examples

 A record

 (relay1.west-coast.yahoo.com, 145.137.93.126, A)

 NS record

 (yahoo.com, dns.yahoo.com, NS)

 CNAME record

 (yahoo.com, relay1.west-coast.yahoo.com, CNAME)

MX record

» (yahoo.com, mail.yahoo.com, MX)

17

DNS

Inserting Records into DNS

- Example: new startup "Network Utopia"
- Register name networkuptopia.com at DNS registrar (e.g., Network Solutions)
 - » provide names, IP addresses of authoritative name server (primary and secondary)
 - » registrar inserts two RRs into com TLD server:

```
(networkutopia.com, dns1.networkutopia.com, NS)
(dns1.networkutopia.com, 212.212.212.1, A)
```

- Create authoritative server Type A record for www.networkuptopia.com; Type MX record for networkutopia.com
- How do people get IP address of your Web site?

DNS Protocol DNS *query* and *reply* messages

- DNS *query* and *reply* messages both have the same message format
- Messages have a fixed length message header
 - » Identification 16 bit query/reply identifier used to match relies to queries
 - » Flags:
 - Query/Reply bit
 - "Reply is authoritative" bit
 - Recursion desired" bit

*****

DNS Protocol

DNS query and reply messages

Messages have a variable-length "question & answer" body

Questions:

- » The name and type fields (type A or MX) for a query — hotmail.com MX
- Answers:
 - » One RR for each IP address answering query

Authority:

» Resource records of other authoritative servers

DNS Resource Records

dig query/reply message example

```
atria:[~]% /usr/bin/dig www.google.com
; <<>> DiG 9.8.1-P1 <<>> www.google.com
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 65309
;; flags: qr rd ra; QUERY: 1, ANSWER: 6, AUTHORITY: 0, ADDITIONAL: 0
;; QUESTION SECTION:
;www.google.com.
                                         IN
                                                 Α
;; ANSWER SECTION:
                                                 173.194.73.105
www.google.com.
                        33
                                IN
                                         Α
www.google.com.
                        33
                                IN
                                         Α
                                                 173.194.73.147
                        33
                                                 173.194.73.106
www.google.com.
                                IN
                                        Α
                        33
                                                 173.194.73.103
www.google.com.
                                IN
                                        Α
www.google.com.
                        33
                                IN
                                        Α
                                                 173.194.73.104
                                                 173.194.73.99
www.google.com.
                        33
                                IN
                                        Α
```

21

dig /usr/bin/dig on CS Linux machines

- man dig
 - » at Unix command line
 - » or see http://linux.die.net/man/1/dig

+norecurse

- » run an iterative query
- ♦ @servername
 - » ask the specified server (instead of your local authoritative server)
- +trace
 - » make iterative queries and show results each time

MX, CNAME, NS

» indicate type of query (default is A)

DNS Example Empty Cache

DNS Example Empty Cache - Steps

- Client sends query www.cnn.com to local server
- Local server looks in cache, cache is empty
- Local server contacts root server
 » root server responds with NS of .com domain
- Local server contacts .com NS
 » .com NS responds with NS of cnn.com domain
- Local server contacts cnn.com NS
 » cnn.com NS responds with A of www.cnn.com
- At every step, the information sent to the local server is stored in its cache

DNS Example Warm Cache

DNS Example Warm Cache - Steps

- Client sends query www2.cnn.com to local server
- Local server looks in cache
 - » doesn't find www2.cnn.com, but does find cnn.com NS
- Local server contacts cnn.com NS
 - » cnn.com NS responds with A of www2.cnn.com
- At every step, the information sent to the local server is stored in its cache

The Domain Name System

Summary

- F gets 270,000,000+ hits per day
 » Other servers have comparable load
- The Verisign TLD servers answer 5,000,000,000 queries per day
- Clearly the DNS would collapse without:
 - » Hierarchy
 - » Distributed processing
 - » Caching

 If DNS fails, Internet services stop working!

27

The Domain Name System

For More Info

- DNS Specification
 » RFC 1034, RFC 1035
- DNS Caching
 - » RFC 2136

DNS Attacks

» CAIDA, Nameserver DoS Attack October 2002 analysis <u>http://www.caida.org/projects/dns/dns-root-gtld/oct02dos.xml</u>

Application-Layer Protocols Outline

- The architecture of distributed systems
 - » Client/Server computing
 - » P2P computing
 - » Hybrid (Client/Server and P2P) systems
- The programming model used in constructing distributed systems
 - » Socket programming
- Example client/server systems and their application-level protocols
 - » The World-Wide Web (HTTP)
 - » Reliable file transfer (FTP)
 - » E-mail (SMTP & POP)
 - » Internet Domain Name System (DNS)

