
1

CS 455/555
Intro to Networks and Communications

The Transport Layer
Multiplexing, UDP, & Reliable Transport

Dr. Michele Weigle

Department of Computer Science
Old Dominion University

mweigle@cs.odu.edu

http://www.cs.odu.edu/~mweigle/CS455-S13

2

The Transport Layer
Transport services and protocols
  Transport protocols:

»  Provide logical communication
between application processes
running on different hosts

»  Execute on the end systems
(and not in the network)

  Transport v. network
layer services:
»  Network layer: data transfer

between end systems
»  Transport layer: data transfer

between processes
  Relies on, and enhances, network

layer services

application
transport
network

link
physical

...

...

...

...

network
link

physical

transport

Logical
end-to-end
transport

application
transport
network

link
physical

transport

network
link

physical

3

Transport Layer Protocols
Internet transport services
  TCP: Reliable, in-order, unicast

delivery
»  Congestion control
»  Flow control
»  Connection setup

  UDP: Unreliable, unordered
("best-effort"), unicast
or multicast delivery
»  (Minimal) error detection

  Services not available:
»  Performance guarantees

  No guarantees of available bandwidth
  No guarantees of end-to-end delay

»  Other (non-unicast) delivery models
  Multicast (reliable v. unreliable)
  Anycast

application
transport
network

link
physical

...

...

...

...

network
link

physical

transport

Logical
end-to-end
transport

application
transport
network

link
physical

transport

network
link

physical

4

Transport Layer Protocols & Services
Outline

  Fundamental transport layer
services
»  Multiplexing/Demultiplexing
»  Error detection
»  Reliable data delivery
»  Pipelining
»  Flow control
»  Congestion control

  Service implementation in
Internet transport protocols
»  UDP
»  TCP

application
transport
network

link
physical

...

...

...

...

network
link

physical

transport

Logical
end-to-end
transport

application
transport
network

link
physical

transport

network
link

physical

5

Fundamental Transport Layer Services
Multiplexing/Demultiplexing
  Each end-system has a single protocol "stack"

»  The stack is shared between all applications using the network

application
transport
network

link
physical

  Multiplexing is the process of
allowing multiple applications to
use the network simultaneously
»  (To send data into the network

concurrently)

M1 M2

Process!
1!

Process!
2!

M1 M2

  Demultiplexing is the process of
delivering received data to the
appropriate application

6

Multiplexing/Demultiplexing
Review: Protocol layering in the Internet

  At the sender, each layer takes data from above
»  May subdivide into multiple data units at sending layer
»  Adds header information to create new data unit
»  Passes new data unit to layer below

  The process is reversed at the receiver

application
transport
network

link
physical

Source Destination
Message"

Segment"
Datagram"

Frame"Hlink Htrans Hnet M Htrans Hnet Hlink M

Hnet Htrans M

Htrans M

M

Htrans Hnet M

Htrans M

M application
transport
network

link
physical

7

M

application
transport
network

link
physical

application
transport
network

link
physical

application
transport
network

link
physical

M

P2

Multiplexing/Demultiplexing
Demultiplexing

  Demultiplexing is the process of delivering received
segments to the correct application-layer process
»  IP address (in network-layer datagram header) identifies the

receiving machine
»  Port number (in transport-layer segment header) identifies

the receiving process

Receiver

Segment"

P1

P3 P4

Segment header!
(has port #)!

Application-layer data!

Sender 1 Sender 2

M M

Hnet segment
Htrans M

Datagram"

Datagram header!
(has IP addr)!

8

Multiplexing/Demultiplexing
Transport protocol specific demultiplexing
  Demultiplexing actions depend on whether the transport layer is

connectionless (UDP) or connection-oriented (TCP)

  UDP demultiplexes segments to the socket
»  UDP uses 2-tuple

<destination IP address, destination port number>
 to identify the socket

»  Socket is "owned" by some process (allocated by OS).

  TCP demultiplexes segments to the connection
»  TCP uses 4-tuple

<source IP addr, source port nbr, destination IP addr, destination port nbr>
 to the identify connection

»  Connection (and its socket) is owned by some process

9

Web client"
Host C"

source IP: C
dest IP: B

source port: y
dest. port: 80

source IP: C
dest IP: B

source port: x
dest. port: 80

Multiplexing/Demultiplexing
Examples

Host A"
DNS"

Server B"

DNS server
port use

Web client"
Host A"

Web"
Server B"

Web server
port use

source IP: A
dest IP: B

source port: x
dest. port: 80

dest. IP: B
dest. port: 53

dest. IP: A
dest. port: x

10

Internet Transport Protocols
User Datagram Protocol (UDP) [RFC 768]
  No frills, "bare bones" Internet

transport protocol
  Best effort service — UDP segments

may be:
»  Lost
»  Delivered out of order to the application
»  Delivered multiple times to the

application
  "Connectionless"

»  No handshaking between UDP sender,
receiver

»  Each UDP segment handled
independently of others

  Error Detection
»  Based on checksum
»  Make sure received packets haven't been

corrupted

32 bits"

application data
(message payload)

UDP segment format"

Length field is length in
bytes, of UDP segment

(including header)

length checksum
source port # dest. port #

11

User Datagram Protocol (UDP)
Is unreliable, unordered communications useful?

  Who uses UDP?
»  Often used for streaming

multimedia applications
»  Loss tolerant
»  Rate sensitive

  Other UDP uses (why?):
»  DNS
»  SNMP
»  Routing protocols

Why use UDP?
  No connection establishment

(which can add delay)
  Simple: no connection state at

sender, receiver
  Small segment header
  No congestion control: UDP

can blast away as fast as desired

  Reliable transfer over UDP still possible
»  Reliability can always be added at the application layer
»  (Application-specific error recovery)

12

Fundamental Transport Layer Services
Principles of reliable data transfer

  Goal: Provide a reliable channel abstraction
»  The characteristics of the underlying channel will determine the complexity

of providing reliable communications
  Issues: State required at sender and receiver and number of control

messages exchanged

Sending
Process

Receiving
Process

Reliable Channel

data" data"

packet"packet"

Application
Layer

Transport
Layer Reliable Data

Transfer Protocol
(Sending Side)

Reliable Data
Transfer Protocol
(Receiving Side)

Unreliable Channel
Network

Layer

13

Reliable Data Transfer
Programming interfaces

Called "from above" by the application.
Application passes in data to be

delivered to receiving application

Called by rdt
to transfer packet over

unreliable channel to receiver
Called when packet arrives
on receive-side of channel

Called by rdt to deliver
data to application

packet"packet"

Application
Layer

Transport
Layer Reliable Data

Transfer Protocol
(Sending Side)

Reliable Data
Transfer Protocol
(Receiving Side)

Unreliable Channel
udt_send()

rdt_rcv()

Network
Layer

rdt_send()

deliver_data() data" data"

14

Reliable Data Transfer
Protocol specification method

  Use finite state machines to specify sender and
receiver algorithms
»  When in a given state, the next state (and actions) are

uniquely determined by the next event

event causing state transition
actions taken on state transition

event
actions

State"
1"

State"
2"

15

Reliable Data Transfer Protocol 1.0
Reliable transfer over a reliable channel
  The underlying channel is assumed to be perfectly

reliable
»  No bit errors
»  No loss of packets

wait for"
call from"
above"

wait for"
call from"
below"

rdt_send(data)
make_pkt(pkt,data)
udt_send(pkt)

rdt_rcv(pkt)
extract(pkt,data)
deliver_data(data)

  Sender state machine   Receiver state machine

16

Reliable Data Transfer Protocol 1.0
Programming interfaces

packet"packet"

Application
Layer

Transport
Layer

Reliable Channel
udt_send()

rdt_rcv()

Network
Layer

rdt_send()

deliver_data() data" data"

wait for"
call from"
below"

rdt_rcv(pkt)
extract(pkt,data)
deliver_data(data)

wait for"
call from"
above"rdt_send(data)

make_pkt(pkt,data)
udt_send(pkt)

  This is the complete protocol under the assumption
of a reliable network channel

17

Reliable Data Transfer Protocol 2.0
Reliable transfer over a channel with bit errors

  Now assume the underlying channel may "flip" random bits in a
packet

  How to detect errors?
  How to recover from errors:

»  acknowledgements (ACKs) — the receiver explicitly tells the sender that a
packet was received OK

»  negative acknowledgements (NAKs) — the receiver explicitly tells the
sender that a packet had errors

»  Sender retransmits packet on receipt of NAK
  New mechanisms to deal with bit errors:

»  Error detection
»  Control messages (ACK, NAK) from a receiver to the sender
»  Retransmission

18

Reliable Data Transfer Protocol 2.0
Reliable transfer over a channel with bit errors only

Sender FSM

wait for"
ACK or"
NAK"

rdt_send(data)"
compute chksum"
make_pkt(sndpkt,data,chksum)"
udt_send(sndpkt)"

wait for"
call from"
above"

rdt_rcv(rcvpkt) &&"
 isACK(rcvpkt)"

Receiver FSM

wait for"
call from"
below"

rdt_rcv(rcvpkt) &&"
 corrupt(rcvpkt)"
udt_send(NAK)"

rdt_rcv(rcvpkt) &&"
 notcorrupt(rcvpkt)"
extract(rcvpkt,data)"
deliver_data(data)"
udt_send(ACK)"

rdt_rcv(rcvpkt) &&"
 isNAK(rcvpkt)"
udt_send(sndpkt)"

19

Reliable Data Transfer Protocol 2.0
Example 1: No Errors Occur

Sender FSM

wait for"
ACK or"
NAK"

rdt_send(data)"
compute chksum"
make_pkt(sndpkt,data,chksum)"
udt_send(sndpkt)"

wait for"
call from"
above"

rdt_rcv(rcvpkt) &&"
 isACK(rcvpkt)"

Receiver FSM

wait for"
call from"
below"

rdt_rcv(rcvpkt) &&"
 corrupt(rcvpkt)"
udt_send(NAK)"

rdt_rcv(rcvpkt) &&"
 notcorrupt(rcvpkt)"
extract(rcvpkt,data)"
deliver_data(data)"
udt_send(ACK)"

rdt_rcv(rcvpkt) &&"
 isNAK(rcvpkt)"
udt_send(sndpkt)"

20

Reliable Data Transfer Protocol 2.0
Example 2: A corrupted packet arrives at the receiver

wait for"
ACK or"
NAK"

rdt_send(data)"
compute chksum"
make_pkt(sndpkt,data,chksum)"
udt_send(sndpkt)"

wait for"
call from"
above"

rdt_rcv(rcvpkt) &&"
 isACK(rcvpkt)"

rdt_rcv(rcvpkt) &&"
 isNAK(rcvpkt)"
udt_send(sndpkt)"

Receiver FSM

wait for"
call from"
below"

rdt_rcv(rcvpkt) &&"
 corrupt(rcvpkt)"
udt_send(NAK)"

rdt_rcv(rcvpkt) &&"
 notcorrupt(rcvpkt)"
extract(rcvpkt,data)"
deliver_data(data)"
udt_send(ACK)"

Sender FSM

21

Reliable Data Transfer Protocol 2.0
Simple… but wrong!

  What happens if an ACK/NAK is
corrupted?
»  Sender doesn't know what happened at

the receiver!

  What to do?
»  Sender ACKs/NAKs the receiver's ACK/NAK?
»  Retransmit last data packet?

wait for"
ACK or"
NAK"

wait for"
call from"
above"

rdt_rcv(rcvpkt) &&"
 isNAK(rcvpkt)"
udt_send(sndpkt)"

wait for"
call from"
below"

rdt_rcv(rcvpkt) &&"
 corrupt(rcvpkt)"
udt_send(NAK)"

rdt_rcv(rcvpkt) &&"
 notcorrupt(rcvpkt)"
udt_send(ACK)"

22

Reliable Data Transfer Protocol 2.0
Simple… but wrong!

  Deal with corrupted ACKs/NAKs by
retransmission of data packets

  Sender will add a sequence number to
each packet to allow the receiver to
detect duplicate packets
»  Receiver's transport layer discards duplicate packets

wait for"
ACK or"
NAK"

wait for"
call from"
above"

wait for"
call from"
below"

rdt_rcv(rcvpkt) &&"
 corrupt(rcvpkt)"
udt_send(NAK)"

rdt_rcv(rcvpkt) &&"
 notcorrupt(rcvpkt)"
udt_send(ACK)"

rdt_rcv(rcvpkt) &&"
 isNAK(rcvpkt)"
udt_send(sndpkt)"

  How much space to reserve in a header field for
sequence numbers?

23

Reliable Data Transfer Protocol 2.1
Sender state machine to handle garbled ACKs/NAKs

wait for"
ACK/NAK"

0"

wait for"
rdt_send"

0"

wait for"
ACK/NAK"

1"

rdt_rcv(rcvpkt) &&"
(corrupt(rcvpkt) ||"
 isNAK(rcvpkt))"
udt_send(sndpkt)"

rdt_rcv(rcvpkt)"
 && notcorrupt(rcvpkt)"
 && isACK(rcvpkt)"

wait for"
rdt_send"

1"

rdt_send(data)"
compute chksum"
make_pkt(sndpkt,0,data,chksum)"
udt_send(sndpkt)"

rdt_send(data)"
compute chksum"
make_pkt(sndpkt,1,data,chksum)"
udt_send(sndpkt)"

rdt_rcv(rcvpkt) &&"
(corrupt(rcvpkt) ||"
 isNAK(rcvpkt))"
udt_send(sndpkt)"

rdt_rcv(rcvpkt)"
 && notcorrupt(rcvpkt)"
 && isACK(rcvpkt)"

24

Reliable Data Transfer Protocol 2.1
Receiver state machine to handle garbled ACKs/NAKs

wait for"
rdt_rcv"
seq 0"

wait for"
rdt_rcv"
seq 1"

rdt_rcv(rcvpkt)"
 && notcorrupt(rcvpkt)"
 && has_seq0(rcvpkt)"
extract(rcvpkt,data)"
deliver_data(data)"
compute chksum"
make_pkt(sndpkt,ACK,chksum)"
udt_send(sndpkt)"

rdt_rcv(rcvpkt)"
 && corrupt(rcvpkt)"
compute chksum"
make_pkt(sndpkt,NAK,"
 chksum)"
udt_send(sndpkt) "

rdt_rcv(rcvpkt)"
 && corrupt(rcvpkt)"
compute chksum"
make_pkt(sndpkt,NAK,chksum)"
udt_send(sndpkt) "

rdt_rcv(rcvpkt)"
 && notcorrupt(rcvpkt)"
 && has_seq0(rcvpkt)"
compute chksum"
make_pkt(sndpkt,ACK,"
 chksum)"
udt_send(sndpkt)"

rdt_rcv(rcvpkt)"
 && notcorrupt(rcvpkt)"
 && has_seq1(rcvpkt)"
compute chksum"
make_pkt(sndpkt,ACK,"
 chksum)"
udt_send(sndpkt)"

rdt_rcv(rcvpkt)"
 && notcorrupt(rcvpkt)"
 && has_seq1(rcvpkt)"
extract(rcvpkt,data)"
deliver_data(data)"
compute chksum"
make_pkt(sndpkt,ACK,chksum)"
udt_send(sndpkt)"

25

Reliable Data Transfer Protocol 2.1
Discussion (Handling garbled ACKs/NAKs)

  Sender issues   Receiver issues
Sequence number added to
header

»  Two sequence numbers suffice

Must check if received ACK/
NAK is corrupted

Number of states doubles

»  State encodes whether current
packet has sequence number 0
or 1

Must check if received
packet is duplicate

»  State encodes whether
expected packet sequence
number is 0 or 1

Note: receiver can not know
if its last ACK/NAK
received OK at sender

26

Reliable Data Transfer Protocol 2.2
A NAK-free protocol

  Instead of NAKing, receiver
sends ACK for last packet
received OK
» Receiver must include the sequence

number of packet being ACKed in
ACK

  Receipt of duplicate ACKs at
sender is equivalent to a NAK
» Sender retransmits current packet

wait for"
rdt_send"

0"

rdt_send(data)"
compute chksum"
make_pkt(sndpkt,0,data,chksum)"
udt_send(sndpkt) "

rdt_rcv(rcvpkt) &&"
(corrupt(rcvpkt) ||"
 isACK(rcvpkt,1))"
udt_send(sndpkt)"

wait for"
rdt_send"

1"

wait for"
ACK0"

Sender FSM!

rdt_rcv(rcvpkt)"
 && notcorrupt(rcvpkt)"
 && isACK(rcvpkt,0)"

27

Reliable Data Transfer Protocol 2.2
Receiver state machine to eliminate NAKs

wait for"
rdt_rcv"
seq 0"

wait for"
rdt_rcv"
seq 1"

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) "
 && has_seq0(rcvpkt)"
extract(rcvpkt,data)"
deliver_data(data)"
compute chksum"
make_pkt(sndpkt,ACK0,chksum)"
udt_send(sndpkt)"

rdt_rcv(rcvpkt) &&"
 (corrupt(rcvpkt) ||"
 has_seq0(rcvpkt))"
udt_send(sndpkt)"

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) "
 && has_seq1(rcvpkt)"
extract(rcvpkt,data)"
deliver_data(data)"
compute chksum"
make_pkt(sndpkt,ACK1,chksum)"
udt_send(sndpkt)"

rdt_rcv(rcvpkt) &&"
 (corrupt(rcvpkt) ||"
 has_seq1(rcvpkt))"
udt_send(sndpkt)"

28

Reliable Data Transfer Protocol 3.0
Dealing with channels with errors and loss

  Now assume the underlying channel can also lose packets

  New problem: How to detect loss?
»  Are checksums, ACKs, sequence numbers, retransmissions

enough?

  Approach: sender waits "reasonable" amount of time and
retransmits if no ACK received in this time
»  Requires the use of a countdown timer

  What if packet (or ACK) just delayed beyond its timer?
»  Retransmission will be duplicate…
»  But use of sequence numbers already handles this!

29

Reliable Data Transfer Protocol 3.0
Sender state machine to handle lost/garbled packets

wait for"
ACK"

1"

rdt_rcv(rcvpkt) &&"
(corrupt(rcvpkt) ||"
 isACK(rcvpkt,1))"

wait for"
rdt_send"

1"

rdt_send(data)"
compute chksum"
make_pkt(pkt1,1,data,chksum)"
udt_send(pkt1)"

rdt_rcv(rcvpkt) &&"
(corrupt(rcvpkt) ||"
 isACK(rcvpkt,0))"

rdt_rcv(rcvpkt)"

rdt_rcv(rcvpkt)"

rdt_rcv(rcvpkt)"
 && notcorrupt(rcvpkt)"
 && isACK(rcvpkt,1)"
"

wait for"
ACK"

0"

wait for"
rdt_send"

0"
timeout"
udt_send(pkt0)"
start_timer"

start_timer"

rdt_send(data)"
compute chksum"
make_pkt(pkt0,0,data,chksum)"
udt_send(pkt0)"

start_timer"

stop_timer" stop_timer"

rdt_rcv(rcvpkt)"
 && notcorrupt(rcvpkt)"
 && isACK(rcvpkt,0)"
"timeout"

udt_send(pkt1)"
start_timer"

30

Receiver State Machine for RDT 2.2
What changes are needed to handle lost/garbled packets?

wait for"
rdt_rcv"
seq 0"

wait for"
rdt_rcv"
seq 1"

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) "
 && has_seq0(rcvpkt)"
extract(rcvpkt,data)"
deliver_data(data)"
compute chksum"
make_pkt(sndpkt,ACK0,chksum)"
udt_send(sndpkt)"

rdt_rcv(rcvpkt) &&"
 (corrupt(rcvpkt) ||"
 has_seq0(rcvpkt))"
udt_send(sndpkt)"

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) "
 && has_seq1(rcvpkt)"
extract(rcvpkt,data)"
deliver_data(data)"
compute chksum"
make_pkt(sndpkt,ACK1,chksum)"
udt_send(sndpkt)"

rdt_rcv(rcvpkt) &&"
 (corrupt(rcvpkt) ||"
 has_seq1(rcvpkt))"
udt_send(sndpkt)"

31

Fundamental Transport Layer Services
Principles of reliable data transfer

  Use acknowledgements (ACKs) to indicate that a
packet has been received

  Simple protocol:
»  stop-and-wait - can't send a new packet until the

previous packet has been acknowledged
»  packet loss - sender sets a timer and re-sends the packet

if no ACK received when timer expires
»  ACK loss - ACKs are not retransmitted

32

RDT 3.0
Overview

  Sender
»  put a sequence number (0 or 1)

on each packet
»  when receive an non-duplicate

ACK
  advance seqno
  reset the timer
  send the next packet

»  when receive a duplicate ACK
  wait for a non-duplicate ACK

»  if timer expires before ACK
received
  re-send the previous packet

  Receiver
»  keep track of which seqno

expected next (0 or 1)
»  when receive the next seqno

expected
  send an ACK for this seqno
  advance next seqno expected

»  when receive a duplicate
packet (packet isn't the next
expected)
  re-send last ACK (for last

seqno)

33

Sender" Receiver"

Reliable Data Transfer
Simple Protocol Examples

  Protocol operation with
no loss

  Protocol operation
with a lost packet

Sender" Receiver"
send pkt0

rcv ACK0

rcv ACK1
send pkt0

rcv pkt0

rcv pkt1
send ACK1

rcv pkt0
send ACK0

send pkt0

rcv ACK0
send pkt1

timeout

rcv ACK1
send pkt0

rcv pkt0
send ACK0

rcv pkt1
send ACK1

rcv pkt0
send ACK0

pkt0

ACK0

pkt1

ACK1

pkt0

ACK0

pkt0

ACK0

pkt1 X! (pkt1 lost)

ACK0

pkt0

ACK1

pkt1

send ACK0

send pkt1

resend pkt1

34

Reliable Data Transfer
Simple Protocol Examples

  Protocol operation with a
lost ACK

Sender" Receiver"
send pkt0

timeout

rcv pkt0
send ACK0

rcv pkt1
(duplicate!)

pkt0

ACK0

X!
pkt1

rcv ACK0
send pkt1 pkt1 rcv pkt1

send ACK1
ACK1

resend pkt1

What should happen next?

35

Sender" Receiver"
send pkt0

rcv pkt0
send ACK0

pkt0

ACK0
rcv ACK0
send pkt1 pkt1 rcv pkt1

send ACK1

Reliable Data Transfer
Simple Protocol Examples

  Protocol operation with a
lost ACK

  Protocol operation with a
poor timeout value

Sender" Receiver"
send pkt0

timeout

rcv ACK1
send pkt0

rcv pkt0
send ACK0

rcv pkt1
(duplicate!)
send ACK1

rcv pkt0
send ACK0

pkt0

ACK0

X!

ACK0

pkt0

ACK1

pkt1

rcv ACK0
send pkt1 pkt1 rcv pkt1

send ACK1
ACK1 timeout

rcv ACK1
send pkt0

rcv pkt1
(duplicate!)
send ACK1
rcv pkt0
send ACK0

pkt1

ACK1

pkt0

ACK0

ACK1

resend pkt1 resend pkt1

36

Reliable Data Transfer Protocol 3.0
Sender state machine to handle lost/garbled packets

wait for"
ACK"

1"

rdt_rcv(rcvpkt) &&"
(corrupt(rcvpkt) ||"
 isACK(rcvpkt,1))"
udt_send(sndpkt)!

wait for"
rdt_send"

1"

rdt_send(data)"
compute chksum"
make_pkt(pkt1,1,data,chksum)"
udt_send(pkt1)"

rdt_rcv(rcvpkt) &&"
(corrupt(rcvpkt) ||"
 isACK(rcvpkt,0))"
udt_send(sndpkt)!
"

rdt_rcv(rcvpkt)"

rdt_rcv(rcvpkt)"

rdt_rcv(rcvpkt)"
 && notcorrupt(rcvpkt)"
 && isACK(rcvpkt,1)"
"

wait for"
ACK"

0"

wait for"
rdt_send"

0"
timeout"
udt_send(pkt0)"
start_timer"

start_timer"

rdt_send(data)"
compute chksum"
make_pkt(pkt0,0,data,chksum)"
udt_send(pkt0)"

start_timer"

stop_timer" stop_timer"

rdt_rcv(rcvpkt)"
 && notcorrupt(rcvpkt)"
 && isACK(rcvpkt,0)"
"timeout"

udt_send(pkt1)"
start_timer"

37

Reliable Data Transfer Protocol 3.0
Sender state machine to handle lost/garbled packets

wait for"
ACK"

1"

rdt_rcv(rcvpkt) &&"
(corrupt(rcvpkt) ||"
 isACK(rcvpkt,1))"

wait for"
rdt_send"

1"

rdt_send(data)"
compute chksum"
make_pkt(pkt1,1,data,chksum)"
udt_send(pkt1)"

rdt_rcv(rcvpkt) &&"
(corrupt(rcvpkt) ||"
 isACK(rcvpkt,0))"
"

rdt_rcv(rcvpkt)"

rdt_rcv(rcvpkt)"

rdt_rcv(rcvpkt)"
 && notcorrupt(rcvpkt)"
 && isACK(rcvpkt,1)"
"

wait for"
ACK"

0"

wait for"
rdt_send"

0"
timeout"
udt_send(pkt0)"
start_timer"

start_timer"

rdt_send(data)"
compute chksum"
make_pkt(pkt0,0,data,chksum)"
udt_send(pkt0)"

start_timer"

stop_timer" stop_timer"

rdt_rcv(rcvpkt)"
 && notcorrupt(rcvpkt)"
 && isACK(rcvpkt,0)"
"timeout"

udt_send(pkt1)"
start_timer"

38

Transport Protocol Performance
Performance of RDT 3.0

  Can an end-system make efficient use of a network
under this protocol?

  Consider a 1 Gbps link with 15 ms end-to-end
propagation delay

  How busy is the network?

transmission
time = 8 µs

109 bps
1 kB packet x 8 bits/B

=

utilization =
observation interval
time network busy

=
packet generation time

time to transmit a packet

  How long does it take to transmit a 1,000 byte packet?

  How fast can an end-system transmit packets?

39

rdt_rcv(rcvpkt)"
 && notcorrupt(rcvpkt)"
 && isACK(rcvpkt)"
"wait for"

rdt_send"
1"

wait for"
ACK 0"

wait for"
rdt_send"

0"

rdt_send(data)"
..."
udt_send(sndpkt0)"
start_timer"

rdt_send(data)"
..."
udt_send(sndpkt1)"
start_timer"

Transport Protocol Performance
Performance of RDT 3.0

  How fast can an end-system transmit packets?
»  Packet generation/transmission time = 8 µs (0.008 ms)
»  Propagation delay to receiver = 15 ms
»  ACK generation/transmission time ≈ 8 µs (0.008 ms)
»  Propagation time for ACK to return to sender = 15 ms

  1 packet every 30.016 ms

40

Reliable Data Transfer
Performance

  How busy is the network?

0.027%
30.016 ms

8 µs
= =

utilization =
observation interval
time network busy

=
packet generation time

time to transmit a packet

  Is this good?
»  1,000 byte packet every 30 ms results in (maximum)

throughput of 266 kbps over a 1 Gbps link!
 (266,000 bps over a 1,000,000,000 bps link)

Network protocols limit the use
of physical resources!

41

first packet bit transmitted, t = 0

sender receiver

RTT

last packet bit transmitted, t = L / R

first packet bit arrives
last packet bit arrives, send ACK

ACK arrives, send next
packet, t = RTT + L / R

U
sender = .008

30.008
= 0.00027

microsec
onds

L / R
RTT + L / R

=

Reliable Data Transfer 3.0
Stop and Wait

42

Improving Transport Protocol Performance
Pipelining data transmissions
  Performance can be improved by allowing the sender to

have multiple unacknowledged packets "in flight"

  Issues
»  The range of sequence numbers must be increased
»  ACKs need sequence numbers (what packet is being ACKed?)
»  More packets must be buffered at sender and receiver

Stop-and-Wait protocol" Pipelined protocol"

ACK packets

data packets

ACK packets

data packets

43

Reliable Data Transfer
Pipelining

first packet bit transmitted, t = 0

sender receiver

RTT

last bit transmitted, t = L / R

first packet bit arrives
last packet bit arrives, send ACK

ACK arrives, send next
packet, t = RTT + L / R

last bit of 2nd packet arrives, send ACK
last bit of 3rd packet arrives, send ACK

U
sender = .024

30.008
= 0.0008

microsecon
ds

3 * L / R
RTT + L / R

=

Increase utilization
by a factor of 3!

44

Pipelined Protocols
"Go-Back-n" protocols

  Packet header contains a k-bit sequence number

  A "window" of up to N ≤ 2k consecutive,
unacknowledged packets allowed to be in-flight
»  Up to N packets may be buffered at the sender
»  Window advances as ACKs are received

  Receiver generates "cumulative ACKs"
»  ACKs contain the sequence number of the last in-order

packet received

Packet
sequence

Sliding window"
Sent and
ACK'ed

Sent and
unACK'ed

Unsent and
eligible

Unsent and
ineligible

window base
sequence number"

next sequence
number"

1st
Packet

Last
Packet

45

Packet
sequence

Pipelined Protocols
"Go-Back-n" protocols

  Receiver protocol
»  Use cumulative ACKs — ACK packet n only if all packets numbered less

than n have been received
»  If losses occur, sender may receive duplicate ACKs

  Sender protocol
»  A timer is set for the each (or just the oldest) in-flight packet
»  On timeout for packet n, retransmit packet n and all higher number

packets in the current window

Sliding window"
Sent and
ACK'ed

Sent and
unACK'ed

Unsent and
eligible

Unsent and
ineligible

window base
sequence number"

next sequence
number"

1st
Packet

Last
Packet

46

Packet
sequence

Sliding window"
Sent and
ACK'ed

Sent and
unACK'ed

Unsent and
eligible

Unsent and
ineligible

window base
sequence number"

next sequence
number"

1st
Packet

Last
Packet

Go-Back-n Protocol
Sender

  Sender waits for an event:
»  application has data to send
»  timer goes off
»  ACK is received

47

Go-Back-n Protocol
Sender extended FSM

  THIS SLIDE INTENTIONALLY LEFT BLANK!

48

rdt_send(data) "
if (nextseqnum < base+N) {"
 compute chksum"
 make_pkt(sndpkt[nextseqnum],nextseqnum,data,chksum)"
 udt_send(sndpkt[nextseqnum])"
 if (base == nextseqnum) start_timer"
 nextseqnum += 1"
 }"
else"
 refuse_data(data)"

wait for"
data/ACK/"

timeout"
timeout "
start_timer"
udt_send(sndpkt[base])"
udt_send(sndpkt[base+1])"
..."
udt_send(sndpkt[nextseqnum–1])"

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) "
base := getacknum(rcvpkt) + 1"
if (base == nextseqnum)"
 stop_timer"
else"
 start_timer"

Go-Back-n Protocol
Sender extended FSM

Packet
sequence

Sliding window"
Sent and
ACK'ed

Sent and
unACK'ed

Unsent and
eligible

Unsent and
ineligible

window base
sequence number"

next sequence
number"

1st
Packet

Last
Packet

Packet
sequence

Sliding window"
Sent and
ACK'ed

Sent and
unACK'ed

Unsent and
eligible

Unsent and
ineligible

window base
sequence number"

next sequence
number"

1st
Packet

Last
Packet

49

rdt_send(data) "
if (nextseqnum < base+N) {"
 compute chksum"
 make_pkt(sndpkt[nextseqnum],nextseqnum,data,chksum)"
 udt_send(sndpkt[nextseqnum])"
 if (base == nextseqnum) start_timer"
 nextseqnum += 1"
 }"
else"
 refuse_data(data)"

wait for"
data/ACK/"

timeout"
timeout "
start_timer"
udt_send(sndpkt[base])"
udt_send(sndpkt[base+1])"
..."
udt_send(sndpkt[nextseqnum–1])"

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) "
base := getacknum(rcvpkt) + 1"
if (base == nextseqnum)"
 stop_timer"
else"
 start_timer"

Go-Back-n Protocol
Sender extended FSM

50

Go-Back-n Protocol
Sender extended FSM

  THIS SLIDE INTENTIONALLY LEFT BLANK!

51

default "
udt_send(sndpkt)"

rdt_rcv(rcvpkt) "
 && notcorrupt(rcvpkt)"
 && has_seqnum(rcvpkt,expectedseqnum)"
extract(rcvpkt,data)"
deliver_data(data)"
make_pkt(sndpkt,ACK,expectedseqnum)"
expectedseqnum += 1"
udt_send(sndpkt)"

wait for"
packet/"
timeout"

Go-Back-n Protocol
Receiver extended FSM

  In-order packets processed, out-of-order packets discarded
»  Sender will eventually timeout and retransmit out-of-order packets
»  Thus the receiver need not buffer any packets

  Always send ACK for correctly-received packet with highest in-order sequence
number
»  May generate duplicate ACKs
»  But minimal state — need only remember expectedseqnum

52

Go-Back-n Protocol
Execution example

  Assume a window
size of 4 packets

  Receiver ignores
out-of-order
packets

  Sender retransmits
only on timeout

Se
nd

er
" R

eceiver"

send pkt0
send pkt1
send pkt2
send pkt3

(wait)

pkt2 timeout

rcv pkt0
send ACK0

rcv ACK0
send pkt4

rcv pkt3, discard
send ACK1

rcv ACK1
send pkt5

rcv pkt1
send ACK1

rcv pkt4, discard
send ACK1
rcv pkt5, discard
send ACK1

rcv pkt2
send ACK2

X!

rcv pkt3
send ACK3

send pkt2
send pkt3
send pkt4
send pkt5

53

Transport Protocol Performance
Performance of Go-Back-n protocols

  Can an end-system make more efficient use of a
network under a Go-Back-n protocol?

  Consider again transmitting 1,000 byte packets on a 1
Gbps link with 15 ms end-to-end propagation delay

transmission
time = 8 µs

109 bps
1 kB packet x 8 bits/B

=

utilization =
packet generation time

time to transmit a packet

  How fast can an end-system transmit packets?
»  Depends on the window size!

54

Transport Protocol Performance
Performance of Go-Back-n protocols

  How fast can an end-system transmit packets?
»  N packets can be sent before the sender must wait for

an ACK

  N packets sent every 30.016 ms
»  Packet generation/transmission time = 8 µs
»  Round-trip-time to receiver = 30 ms
»  ACK generation/transmission time ≈ 8 µs

55

Transport Protocol Performance
Performance of Go-Back-n protocols

15.000 ms
15.008 ms
15.016 ms
15.024 ms
15.032 ms
15.040 ms
15.048 ms

0.000 ms
0.008 ms
0.016 ms
0.024 ms
0.032 ms
0.040 ms
0.048 ms

30.008 ms
30.016 ms
30.024 ms
30.032 ms
30.040 ms
30.048 ms
30.054 ms

Se
nd

er
" R

eceiver"

56

Transport Protocol Performance
Performance of Go-Back-n protocols

0
1
2
3
4
5

ACK 0

ACK 1

6
7

Sender Receiver
0.000 ms

0.008 ms

0.016 ms

0.024 ms

0.032 ms

0.040 ms

0.048 ms

15.000 ms

15.008 ms

15.016 ms

15.024 ms

15.032 ms

15.040 ms

15.048 ms
.
.
.

30.008 ms

30.016 ms

30.024 ms

30.032 ms

57

Transport Protocol Performance
Performance of Go-Back-n protocols

  Performance with a window size of N = 64 packets:

  Is this good?
»  64 1,000 byte packets every 30 ms results in (maximum)

throughput of 17 Mbps over a 1 Gbps link!

utilization =
time to receipt of first ACK
time to transmit N packets

30.016 ms

512 µs
= 1.7% =

A 64x improvement!

58

Pipelined Protocols
"Selective Repeat" protocols

  Receiver individually acknowledges all correctly
received packets
»  Buffers packets as needed for eventual in-order delivery to

upper layer
  Sender only resends packets for which an ACK has

not been received
»  Sender maintains a timer for each unACK'ed packet

  Sender window is the same as before
»  N consecutive sequence numbers

(Limits the sequence numbers of sent, unACK'ed packets)

59

Selective Repeat Protocols
Sender and receiver windows

  Sender's view of sequence number space

  Receiver's view of sequence number space

Packet
sequence

Sliding window"

Received
and ACK'ed

Acceptable

Out-of-order but ACK'ed

Expected,
not received

Not expected,
not received

Packet
sequence

Sliding window"

Sent and
ACK'ed

Sent and ACK'ed
Sent and

unACK'ed

Unsent and
eligible Unsent and

ineligible

1st
Packet

Last
Packet

1st
Packet

Last
Packet

60

Selective Repeat Protocols
Sender state machine

  Call from above:
»  If next available sequence number is within window, send the packet and start

a timer for it
  Timeout for packet n:

»  Resend packet n, restart timer for packet n
  ACK received for packet with sequence number n:

»  If n in [sendBase, sendBase+N–1] then mark packet n as received
»  If n == sendBase, advance sendBase to next highest unACKed sequence

number and move the window forward by that amount

Packet
sequence

Sliding window"

Sent and
ACK'ed

Sent and ACK'ed
Sent and

unACK'ed

Unsent and
eligible Unsent and

ineligible

sendBase"
1st

Packet
Last

Packet

61

Packet
sequence

Selective Repeat Protocols
Receiver state machine

  Packet n in [rcvbase, rcvbase+N–1] correctly received:
»  Send an ACK for packet n
»  If packet n is out-of-order then buffer
»  If n == rcvBase, deliver packet n, and all other buffered

consecutive in-order packets, to application, and advance the
window by the number of delivered packets

  Packet n in [rcvbase–N, rcvbase–1] received:
»  Send an ACK for packet n

  Otherwise discard packet (without ACK'ing)

Sliding window"

Received
and ACK'ed

Acceptable

Out-of-order but ACK'ed

Expected,
not received

Not expected,
not received

rcvBase"
1st

Packet
Last

Packet

62

Receiver"
receive pkt0, deliver, send ACK0
0 1 2 3 4 5 6 7 8 9
receive pkt1, deliver, send ACK1
0 1 2 3 4 5 6 7 8 9

receive pkt3, buffer, send ACK3
0 1 2 3 4 5 6 7 8 9

receive pkt4, buffer, send ACK4
0 1 2 3 4 5 6 7 8 9

receive pkt2, deliver 2-5, send ACK2
0 1 2 3 4 5 6 7 8 9

Sender"

X!

send pkt0
0 1 2 3 4 5 6 7 8 9
send pkt1
0 1 2 3 4 5 6 7 8 9
send pkt2
0 1 2 3 4 5 6 7 8 9
send pkt3
0 1 2 3 4 5 6 7 8 9

receive ACK0, send pkt4
0 1 2 3 4 5 6 7 8 9

pkt2 timeout, send pkt2
0 1 2 3 4 5 6 7 8 9

Selective Repeat Protocols
Execution example

receive ACK1, send pkt5
0 1 2 3 4 5 6 7 8 9 receive pkt5, buffer, send ACK5

0 1 2 3 4 5 6 7 8 9

63

  How many sequence
numbers do we need?
»  As many as the largest

number of packets that can
be in flight?

  If the sequence number
space is close to the
window size then the
receiver can get confused

Selective Repeat Protocols
Window state ambiguity

Sender"
0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2

pkt0 timeout
0 1 2 3 0 1 2

Receiver"
0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2

Packet received
with sequence
number 0

pkt0

pkt1

pkt2

X!
pkt0

Sender"
0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2

Receiver"
0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2

Packet received
with sequence
number 0

pkt0

pkt1

pkt2

X!
pkt0

pkt3

64

Selective Repeat Protocols
Window state ambiguity

Sender"
0 1 2 3 4 0 1 2

0 1 2 3 4 0 1 2

0 1 2 3 4 0 1 2

pkt0 timeout
0 1 2 3 4 0 1 2

Receiver"
0 1 2 3 4 0 1 2

0 1 2 3 4 0 1 2

0 1 2 3 4 0 1 2

Packet received
with seq num 0

pkt0

pkt1

pkt2

X!
pkt0

5 seq nums

Sender"
0 1 2 3 4 5 0 1 2

0 1 2 3 4 5 0 1 2

0 1 2 3 4 5 0 1 2

pkt0 timeout
0 1 2 3 4 5 0 1 2

Receiver"
0 1 2 3 4 5 0 1 2

0 1 2 3 4 5 0 1 2

0 1 2 3 4 5 0 1 2

Packet received
with seq num 0

pkt0

pkt1

pkt2

X!
pkt0

6 seq nums

