
1

CS 455/555
Intro to Networks and Communications

The Transport Layer
Reliable data delivery & flow control in TCP

Dr. Michele Weigle

Department of Computer Science
Old Dominion University

mweigle@cs.odu.edu

http://www.cs.odu.edu/~mweigle/CS455-S13

2

Transport Layer Protocols & Services
Outline

  Fundamental transport layer
services
»  Multiplexing/Demultiplexing
»  Error detection
»  Reliable data delivery
»  Pipelining
»  Flow control
»  Congestion control

  Internet transport protocols
»  UDP
»  TCP

application
transport
network

link
physical

...

...

...

...

network
link

physical

transport

Logical
end-to-end
transport

application
transport
network

link
physical

transport

network
link

physical

3

TCP Overview
TCP is…

  Congestion controlled
»  Internet would cease to

function without this!
  Flow controlled

»  Sender and receiver have
synchronized windows to
ensure receiver is not
overwhelmed

  Point-to-point, full-duplex
»  Bi-directional data flow

within a connection
  Reliable, in-order byte

stream
»  No "message boundaries"

  Connection-oriented
»  Handshaking initializes

sender and receiver state
before data exchange

  Pipelined
»  Congestion and flow control

determine window size
»  Each endpoint has two buffers:

a send and receive buffer

RFCs: 793, 1122, 1323, 2018, 2581

socket
door

Application
reads data

TCP receive
buffer

Application
writes data

TCP send
buffer

segments

4

TCP Segment Structure
Header and payload format

source port # dest port #

32 bits

Application data
(variable length)

sequence number
acknowledgement number

rcvr window size

ptr urgent data checksum
F S R P A U head

len
not

used

Options (variable length)

"Urgent data"
("URG")

" ACK number
is valid"

"Push data now"
("PSH")

Connection
establishment and

teardown commands
("RST, SYN, FIN")

Number of bytes
the receiver is
willing to accept

Bytes of data
sent/received are
numbered
(not segments)

Same
checksum
as in UDP

payload ≤ MSS
(Maximum
Segment Size)

20 bytes min

5

TCP Sequence Numbers and ACKs
Telnet example
  Sequence numbers:

» Byte stream "index" of the
first byte in the segment's
payload

  ACKs:
» Sequence number of next

byte expected from the
other side

» ACKs are cumulative

Host A Host B

User
types

'C'

host ACKs
receipt

of echoed
'C'

host ACKs
receipt of

'C', echoes
back 'C'

time

  How does receiver
handle out-of-order
segments?
» TCP spec doesn't say, it's

up to the implementor

6

TCP Intro
Setting the ACK timer

  How large should the ACK timeout value be?
»  Too short: Premature timeouts result in unnecessary

retransmissions
»  Too long: Slow reaction to loss results in poor performance

because the sender's windows stops advancing

  Timer should be longer than the RTT, but how do we
estimate RTT?
»  Measure the time from segment transmission until receipt

of ACK ("SampleRTT")
  Ignore retransmissions - Karn's algorithm
  Measure only one segment's RTT at a time

»  SampleRTT will vary, so we compute an average RTT
based on several recent RTT samples

7

TCP Intro
Estimating round-trip-time

  The estimated RTT is an exponential weighted moving
average (EWMA)
»  Computes a "smooth" average
»  Influence of a given sample decreases exponentially fast
»  Typical value of α is 0.125
»  Typical value of β is 0.25

  Timeout is EstimatedRTT plus "safety margin"
  Large variation in EstimatedRTT results in a larger safety

margin

Deviation = (1-β)*Deviation +
 β * |SampleRTT-EstimatedRTT|

Timeout = EstimatedRTT + 4*Deviation

EstimatedRTT = (1-α)*EstimatedRTT + α *SampleRTT

8

TCP Intro
Estimating round-trip-time

9

Reliable Data Transfer in TCP
Sender's state machine

  TCP retransmits segments if:
»  An expected ACK times out
»  3 duplicate ACKs for a segment are received

wait for"
event"

timeout for segment y "
udt_send(segment y)"
start timer"

TCP_send(data) "
create segment"
udt_send(segment nextseqnum)"
start_timer"

receive ACK for segment y "
update timers"
advance the window to y"
retransmit y if third duplicate ACK"

10

sendbase = initial_sequence number !
nextseqnum = initial_sequence number !
!
loop (forever) { !
 switch(event) !
 event: data received from application !
 above !
 event: timer timeout for segment with  
 sequence number y !
 event: ACK received with value y!
 }!

Reliable Data Transfer in TCP
Simplified sender's state machine

Byte
sequence

Sliding window"
Sent and
ACK'ed

Sent and
unACK'ed

Unsent and
eligible

Unsent and
ineligible

send base" next sequence number"

create TCP segment with sequence  
 number nextseqnum !
start timer for segment with nextseqnum !
pass segment to IP !
nextseqnum = nextseqnum + length(data)!

retransmit segment with sequence  
 number y ("segment y") !
compute new timeout interval for segment y !
restart timer for segment y!

1st
Byte

Last
Byte

11

Byte
sequence

sendbase = initial_sequence number !
nextseqnum = initial_sequence number !
!
loop (forever) { !
 switch(event) !
 event: data received from application !
 above !
 event: timer timeout for segment with  
 sequence number y !
 event: ACK received with value y!
 }!

Reliable Data Transfer in TCP
Simplified sender's state machine

Sliding window"
Sent and
ACK'ed

Sent and
unACK'ed

Unsent and
eligible

Unsent and
ineligible

send base" next sequence number"
if (y > sendbase) { /* Cumulative ACK of all data up to y */ !
 cancel timers for segments with sequence numbers ≤ y !
 sendbase := y !
 } !
else if (y == sendbase) { /* A duplicate ACK */ !
 increment number of duplicate ACKs received !
 if (number of duplicate ACKS received == 3)!
 { /* Fast retransmit */ !
 resend segment with sequence number sendbase!
 restart timer for segment sendbase !
 }!
 }!

1st
Byte

Last
Byte

12

Reliable Data Transfer in TCP
ACK generation rules [RFC 1122, RFC 2581]

Event TCP Receiver action

In-order segment arrival, no
gaps, all previous data already
ACKed

Delayed ACK. Wait 200 ms (up to 500
ms allowed) for next segment. If no
segment received, send ACK

In-order segment arrival, no
gaps, one delayed ACK pending

Immediately send single
cumulative ACK

Out-of-order segment arrival
(higher than expected sequence
number) — Gap detected

Send duplicate ACK, indicating
sequence number of next expected byte

Arrival of segment that
partially or completely fills gap

Immediate ACK if segment starts
at lower end of gap

13

Reliable Data Transfer in TCP
Retransmission examples

Host A

Seq=92, 8 data bytes !

ACK=100!

time"

Host B

X

Seq=92, 8 data bytes!

ACK=100!

  Lost ACK scenario

Host A

Seq=100, 20 data bytes !

Se
q=

92
 ti

m
eo

ut

Host B

Seq=92, 8 data bytes !

Seq=92, 8 data bytes !

Se
q=

10
0

tim
eo

ut

  Premature timeout

tim
eo

ut

14

Reliable Data Transfer in TCP
Retransmission examples

time"

Seq=100, 20 data bytes !

Se
q=

92
 ti

m
eo

ut

Host B

Seq=92, 8 data bytes !

Seq=92, 8 data bytes !

Se
q=

10
0

tim
eo

ut

  Cumulative ACKs potentially
avoid retransmissions

Host A

Seq=92, 8 data bytes !

Host B

X

tim
eo

ut

Seq=100, 20 data bytes !

Host A

  Premature timeout

15

Reliable Data Transfer in TCP
Timeout Interval

Whenever a timeout occurs
» TCP retransmits the non-yet-acknowledged

segment with the smallest sequence number
» Sets the timeout interval to twice the previous

value
 timeout interval grows exponentially after every

consecutive retransmission

16

TCP Flow Control
Window control

  Flow control is the problem of ensuring the receiver is not
overwhelmed
»  The receiver can become overwhelmed if the application reads too

slow or the sender transmits too fast

Byte
sequence

Receiver's buffer (RcvBuffer)"

Delivered to
application

Acceptable but
not received

Received, ACKed,
not delivered

Not expected,
not received

Receiver's window
(RcvWindow)"

  The receiver's window represents its remaining buffer
capacity

  The window advances as the application reads received data

1st
Byte

Last
Byte

17

Byte
sequence

TCP Flow Control
Window control

  The receiver explicitly informs
the sender of the amount of free
buffer space in RcvBuffer
»  RcvWindow field in TCP segment

  The sender keeps the amount of
transmitted, unACKed data less
than most recently received
RcvWindow

Delivered to
application

Acceptable but
not received

Received, ACKed,
not delivered

Not expected,
not received

source port dest port

Application data

sequence number
ack number

receiver
window size
urgent data checksum

flags head
len

not
used

TCP options

Receiver's window"

Receiver's buffer (RcvBuffer)"
1st

Byte
Last
Byte

18

TCP Flow Control
Window control

RcvBuffer"

Delivered to
application

Acceptable but
not received

Received, ACKed,
not delivered

Not expected,
not received

RcvWindow"

LastByteRcvd - LastByteRead ≤ RcvBuffer

LastByteRead" LastByteRcvd"

RcvWindow = RcvBuffer - (LastByteRcvd-LastByteRead)

  The goal is to ensure:

  Sender is sent:

Byte
sequence

1st
Byte

Last
Byte

19

TCP Flow Control
Window control

  The sender ensures:

Sender's buffer"

Sent and
ACKed

Eligible to
be sent

Sent and not
ACKed

Application
blocked from

sending

LastByteSent - LastByteACKed ≤ RcvWindow

LastByteACKed" LastByteSent"

RcvWindow"

Ineligible

Byte
sequence

1st
Byte

Last
Byte

20

TCP Flow Control
Example: How big should receiver window be?

Host B Host A

10 Mbps bottleneck bandwidth
RTT = 20 ms

BDP = 10 Mbps x 20 ms = 25,000 B

RTT

TCP's bandwidth-delay product (BDP):
 bottleneck bandwidth x RTT

So, receiver's window size (W)
should be at least 25,000 bytes.

21

TCP Flow Control
Example: What's max TCP throughput?

Host B Host A

2 KB (2048 B) receive window
20 ms RTT

R = W / RTT
R bps = 2048 B / 20 ms
 = 16,384 b / 0.02 seconds
 = 819,200 bps

RTT

R x RTT = W

So, max TCP throughput is
819.2 kbps

22

TCP Connection Management
The three-way handshake

  TCP endpoints establish a "connection" before
exchanging data segments
»  client: connection initiator

mySocket = new Socket (hostname, port);

TCP 3-way handshake Client
Server

client
socket socket

"welcoming"
socket socket

connection
socket socket bytes

»  server: contacted by client
clientSocket = welcomeSocket.accept();

23

TCP Connection Management
The three-way handshake

client

Connection request (SYN=1, ACK=0!seq=client_isn)!

server

Connection granted (SYN=1, ACK=1!

seq=server_isn, ack=client_isn+1)!

ACK (SYN=0, ACK=1!
seq=client_isn+1, ack=server_isn+1)!

ACK (SYN=0, ACK=1!

seq=client_isn+1, ack=server_isn+1, data="…")!

  Client sends SYN
segment to server
»  The SYN specifies the

client's initial
sequence number

  Third segment may
be an ACK only or
an ACK+data

  Server receives
SYN, replies with
SYN+ACK segment
»  ACKs received SYN
»  Allocates buffers
»  Specifies server's

initial sequence
number

24

Reliable Data Transfer in TCP
Timeout Interval

  What happens if the SYN or SYN/ACK is lost?
»  Initial value of Timeout is 3 seconds

  What happens if the retransmission of the SYN is
lost?
»  Exponential increase

Timeout = EstimatedRTT + 4*Deviation

EstimatedRTT = (1-α)*EstimatedRTT + α *SampleRTT

25

TCP Connection Management
Closing a connection

  Client sends FIN
segment to server

  Server receives FIN,
replies with ACK
»  Server closes

connection, sends FIN

  Client receives FIN,
replies with ACK

  Client enters "timed
wait" state
»  Client will ACK any

received FIN

client

FIN!

server

ACK!

ACK!

FIN!

close()

close()

Connection closed
Ti

m
ed

 W
ai

t

26

TCP Connection Management
Client/Server lifecycles

FIN"
Wait"

1"

Closed"

Estab-"
lished"

FIN"
Wait"

2"

SYN"
Sent"

Timed"
Wait"

Wait 30
seconds

receive ACK
send nothing

receive SYN+ACK
send ACK

close()
send FIN

  TCP client lifecycle   TCP server lifecycle

Estab- 
lished"

Closed"

SYN"
Received"

Close"
Wait"

Listen"Last 
ACK"

receive FIN
send ACK receive ACK

send nothing

Server creates
listen socket

receive SYN
 send SYN & ACK

close()"
send FIN

receive ACK
send nothing

receive FIN
send ACK

receive FIN
send ACK

connect()"
send SYN

27

TCP Connection Management
SYN Flood Attack

  Setup: TCP Connection Setup
»  TCP allocates and initializes connection variables and buffers in

response to a received SYN
»  If TCP never receives 3rd part of handshake, it will deallocate

buffers (after a minute or more)
  Attack: SYN Flood

»  Bad guy sends a large number of SYN segments, but never
completes the handshake

»  Once resources are exhausted, legitimate connections are refused
  Remedy: SYN Cookies

»  Server does not allocate buffers on receipt of SYN
»  Server sends SYN/ACK packet with special sequence number

("cookie")
»  Client returns ACK with SYN/ACK seqno+1 in ackno field (like

normal)
»  Server verifies that this is valid and allocates buffers

28

TCP Connection Management
Port Scanning

 nmap port-mapping tool sends SYN to a
particular port on a host)

1.  source receives a TCP SYN/ACK -- port is open
2.  source receives a TCP RST segment -- SYN reached

the host, but the port is closed (not blocked by
firewall)

3.  source receives nothing -- blocked by firewall

29

Wireshark Example

  See handout

  Wireshark
»  network protocol analyzer
»  http://www.wireshark.org/

  Capture examples
»  http://wiki.wireshark.org/SampleCaptures/

