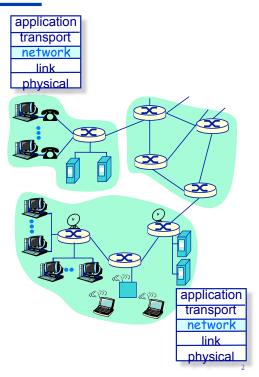
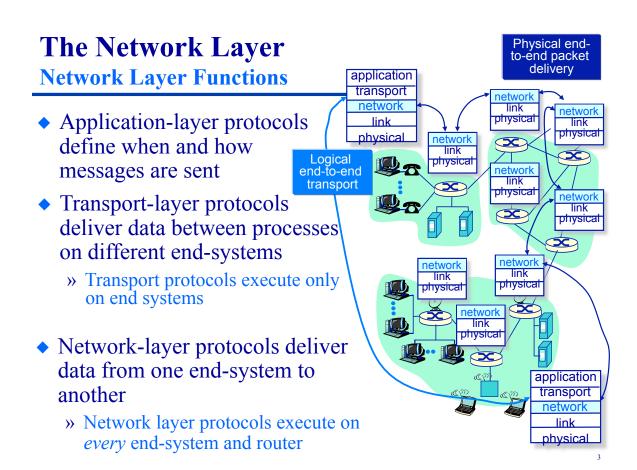
CS 455/555 Intro to Networks and Communications

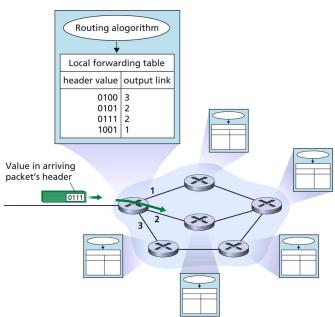

The Network Layer


Dr. Michele Weigle Department of Computer Science Old Dominion University mweigle@cs.odu.edu

http://www.cs.odu.edu/~mweigle/CS455-S13/

The Network Layer: Routing & Addressing Outline

- Network layer functions
- Virtual circuits and datagram networks
- Router architecture
- IP Internet Protocol
 » Addressing
- Routing algorithms
 - » Least cost path computation algorithms
- Hierarchical routing
 - » Connecting networks of networks
- Routing on the Internet
 - » Intra-domain routing
 - » Inter-domain routing



The Network Layer

Network Layer Functions

- The network-layer provides two important functions:
 - » Routing: the route taken by packets from source to destination (involves all routers)
 - » Forwarding (aka Switching): the movement of packets from an input interface to an appropriate output interface (involves a single router)
- Some architectures have a 3rd important function: *connection setup*

The Network Layer Network Service Model

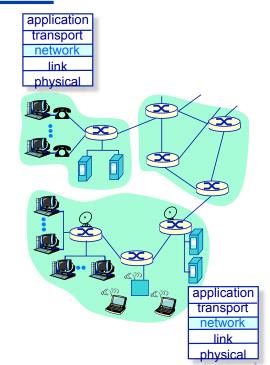
What types of services might be offered by the network layer?

Example services for individual datagrams:

- » guaranteed delivery
- » guaranteed delivery with bounded delay

Example services for a flow of datagrams:

- » in-order datagram delivery
- » guaranteed minimum bandwidth to flow
- » restrictions on changes in inter-packet spacing
- » security


The Network Layer

Network Layer Service Models

	Network	Service	Guarantees ?				Congestion
Architecture		Model	Bandwidth	Loss	Order	Timing	· · · · · · · · · · · · · · · · · · ·
	Internet	best effort	none	no	no	no	no (inferred via loss)
_	ATM	CBR	constant rate	yes	yes	yes	no congestion
-	ATM	ABR	guaranteed minimum	no	yes	no	yes

The Network Layer: Routing & Addressing Outline

- Network layer functions
- Virtual circuits and datagram networks
- Router architecture
- IP Internet Protocol
 » Addressing
- Routing algorithms
 - » Least cost path computation algorithms
- Hierarchical routing
 - » Connecting networks of networks
- Routing on the Internet
 - » Intra-domain routing
 - » Inter-domain routing

Virtual Circuits and Datagram Networks Connection and Connection-less Service

- Datagram network provides network-layer connectionless service
- Virtual circuit (VC) network provides networklayer connection service
- Analogous to the transport-layer services, but:
 - » service: host-to-host
 - » no choice: network provides either one or the other
 - » implementation: in network core

Virtual Circuits and Datagram Networks Virtual Circuits

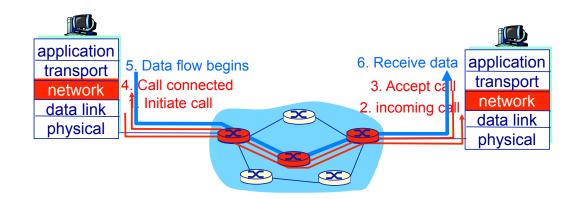
"source-to-dest path behaves much like telephone circuit"

- » performance-wise
- » network actions along source-to-dest path
- Call setup, teardown for each call before data can flow
- Each packet carries VC identifier (not destination host address)
- *Every* router on source-dest path maintains "state" for each passing connection
- Link, router resources (bandwidth, buffers) may be allocated to VC (dedicated resources = predictable service)

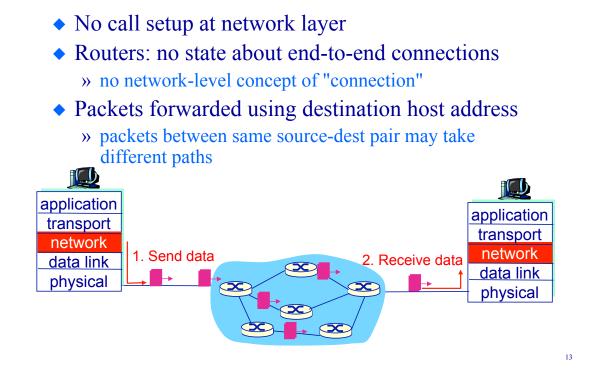
Virtual Circuits Implementation

- A VC consists of:
 - » path from source to destination
 - » VC numbers one number for each link along path
 - » entries in forwarding tables in routers along path
- Packet belonging to VC carries VC number (rather than destination address)
- VC number can be changed on each link
 » New VC number comes from forwarding table

Virtual Circuits Forwarding Table


0						
	VC number					
Forwarding table in northwest router:						
Incoming interface	Incoming VC #	Outgoing interface	Outgoing VC #			
1	12	3	22			
2	63	1	18			
3	7	2	17			
1	97	3	87			
	1		I			

Routers maintain connection state information!


Virtual Circuits

Signaling Protocols

- Used to setup, maintain, and teardown VC
- Used in ATM, frame-relay, X.25
- Not used in today's Internet

Virtual Circuits and Datagram Networks Datagram Networks

Datagram Networks

Forwarding Table Example

	4 billion possible entries		
Destination Address Range	Link Interface		
11001000 00010111 00010000 00000000 through 11001000 00010111 00010111 1111111	0		
11001000 00010111 00011000 00000000 through 11001000 00010111 00011000 11111111	1		
11001000 00010111 00011001 00000000 through 11001000 00010111 00011111 1111111	2		
otherwise	3		

Datagram Networks Longest Prefix Matching

Prefix Match	Link Interface
11001000 00010111 00010	0
11001000 00010111 00011000	1
11001000 00010111 00011	2
otherwise	3

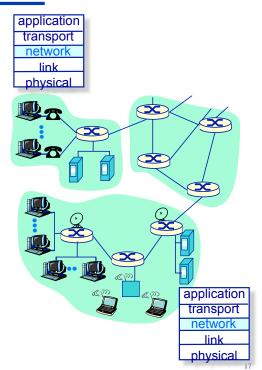
Examples

Destination Addr: 11001000	00010111	<mark>00010</mark> 110	10100001	Which interface?
Destination Addr: 11001000	00010111	00011000	10101010	Which interface?

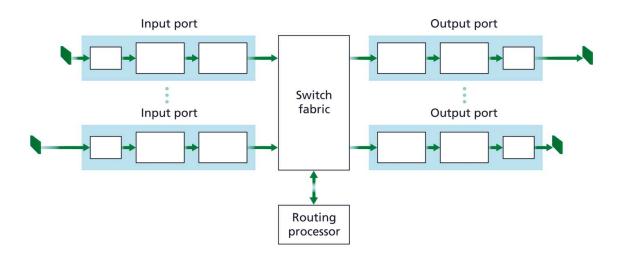
Datagram or VC network

Why?

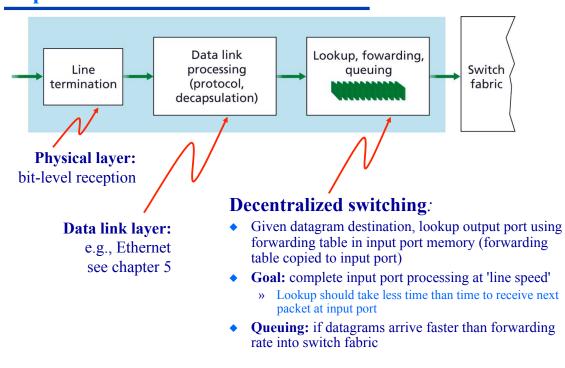
Internet (datagram)


- Data exchange among computers
 - » "elastic" service, no strict timing req.
- "Smart" end systems (computers)
 - » can adapt, perform control, error recovery
 - » simple inside network, complexity at "edge"
- Many link types
 - » different characteristics
 - » uniform service difficult

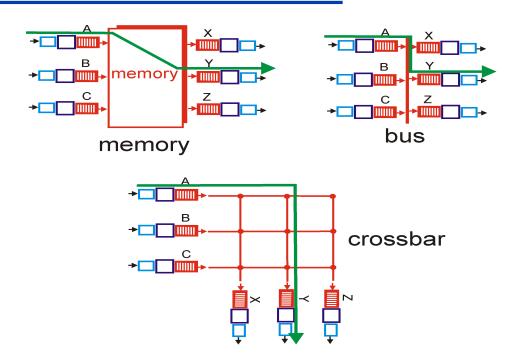
ATM (VC)


- Evolved from telephony
- Human conversation:
 - » strict timing, reliability requirements
 - » need for guaranteed service
- "Dumb" end systems
 - » telephones
 - » complexity inside network

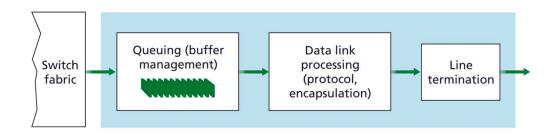
The Network Layer: Routing & Addressing Outline


- Network layer functions
- Virtual circuits and datagram networks
- Router architecture
- IP Internet Protocol
 » Addressing
- Routing algorithms
 - » Least cost path computation algorithms
- Hierarchical routing
 - » Connecting networks of networks
- Routing on the Internet
 - » Intra-domain routing
 - » Inter-domain routing

Router Architecture Overview

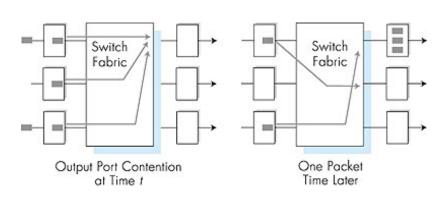


Router Architecture Input Port Functions



Router Architecture

Three Types of Switching Fabrics



Router Architecture Output Ports

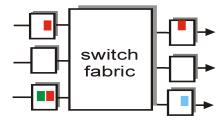
- *Buffering* required when datagrams arrive from fabric faster than the transmission rate
- Scheduling discipline chooses among queued datagrams for transmission

Output Ports Queuing

- Buffering occurs when arrival rate via switch exceeds output line speed
- Queuing (delay) and loss due to output port buffer overflow

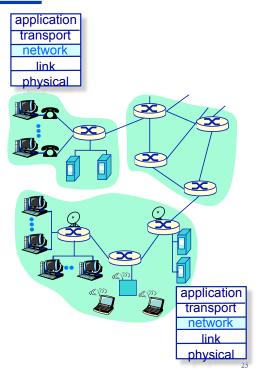

 RFC 3439 rule of thumb: average buffering equal to "typical" RTT (say 250 ms) times link capacity C
 » e.g., C = 10 Gbps link: 2.5 Gbit buffer

• Recent recommendation: with N flows, buffering equal to $\frac{\text{RTT} \cdot \text{C}}{\sqrt{N}}$


23

Queuing At the Input Port

- Switching fabric slower than input ports combined
 » queuing may occur at input queues
- Head-of-the-Line (HOL) blocking
 - » queued datagram at front of queue prevents others in queue from moving forward
- Queuing delay and loss due to input buffer overflow


output port contention at time t - only one red packet can be transferred

green packet experiences HOL blocking

The Network Layer: Routing & Addressing Outline

- Network layer functions
- Virtual circuits and datagram networks
- Router architecture
- IP Internet Protocol
 » Addressing
- Routing algorithms
 - » Least cost path computation algorithms
- Hierarchical routing
 - » Connecting networks of networks
- Routing on the Internet
 - » Intra-domain routing
 - » Inter-domain routing

