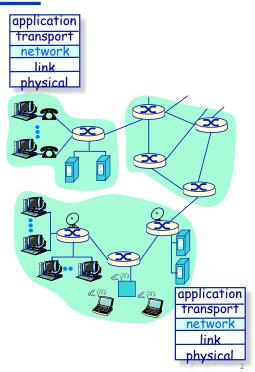
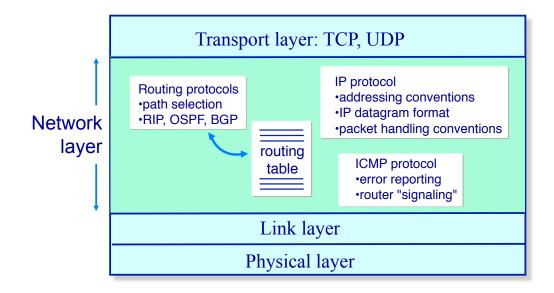
CS 455/555 Intro to Networks and Communications


The Internet Protocol (IP)

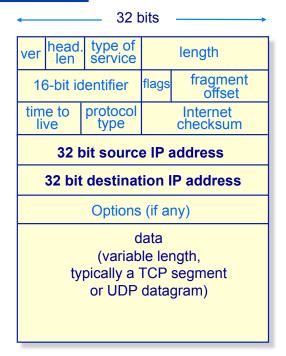
Dr. Michele Weigle Department of Computer Science Old Dominion University mweigle@cs.odu.edu

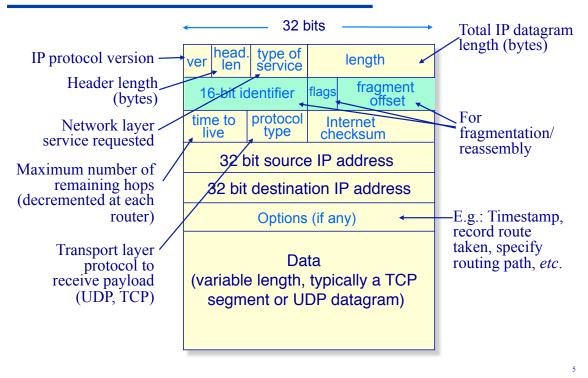
http://www.cs.odu.edu/~mweigle/CS455-S13


The Network Layer: Routing & Addressing Outline

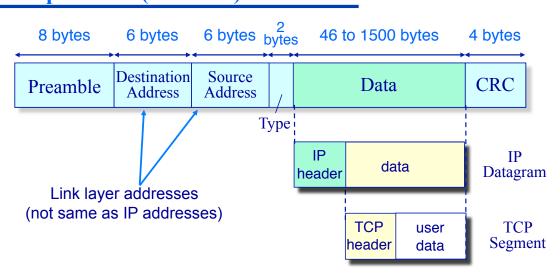
- Network layer functions
- Virtual circuits and datagram networks
- Router architecture
- IP Internet Protocol
 » Addressing
- Routing algorithms
 - » Least cost path computation algorithms
- Hierarchical routing
 - » Connecting networks of networks
- Routing on the Internet
 - » Intra-domain routing
 - » Inter-domain routing

The Internet Network Layer


Host and router network layer functions

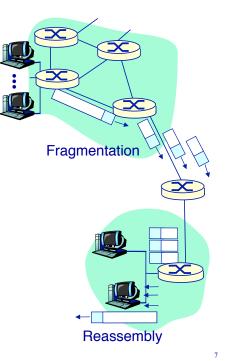

The Internet Network Layer IP datagram format

• IP datagrams


- » The protocol data units at the IP network layer)
- (Not to be confused with UDP datagrams)
 - » The protocol data units at the UDP transport layer are also called datagrams

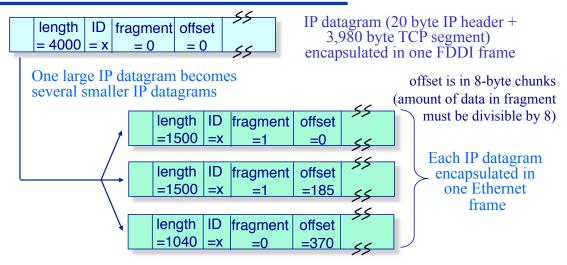
IP Datagrams Details

IP Datagrams Encapsulation (Ethernet)


• Sending interface adapter encapsulates IP datagram (or other network layer protocol packet) in an *Ethernet frame*

IP Datagrams

Fragmentation & Reassembly


Network links have a maximum frame size

- » Called the *maximum transmission unit* (MTU)
- » Different link types, different MTUs
- Large IP datagrams must be "fragmented" to link MTU sizes
 - » One IP datagram becomes several IP datagrams as it transits networks
 - » "Fragments" reassembled only at the final destination
- All fragments carry the same IP identification number
 - » All fragments (except the last) have the fragment bit set

IP Fragmentation and Reassembly

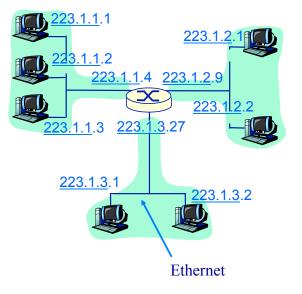
Ethernet MTU example

- Consider a 3,980 byte message sent in an FDDI frame (MTU 4000B)
- The message generates 3 fragments when it transits an Ethernet (MTU 1500 B)
 - » How much application data is in each fragment?

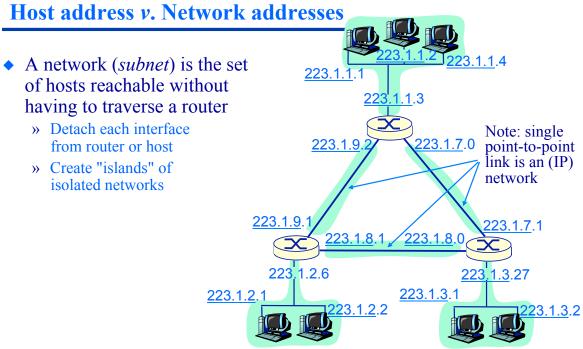
Problem

- Original MTU of 4000 B
- Sending IP datagram of 2000 B (including IP header)
- Transits over network with MTU of 576 B
- How is datagram fragmented?

IP Addressing

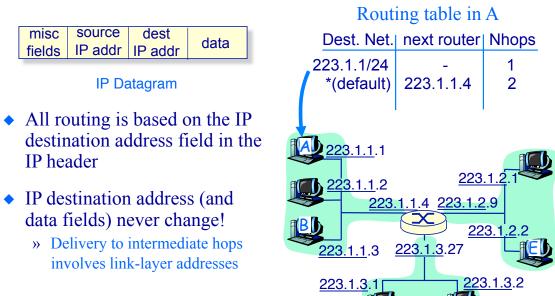

Introduction

• IP address: 32-bit identifier 223.1.1.1 for host or router interface 223.1.1.2 223.1 Interface: connection 223.1.2.9 223 1 between host or router and a physical link 223.1 223.1.1.3 223.⁻ .3.27 » Routers typically have multiple interfaces » Host *may* have multiple interfaces (typically not) 223.1.3.2 223.1.3.1 » IP addresses are associated with an interface, not the host or router 223.1.3.2 = 11011111 00000001 00000011 00000010 3 223 1 2

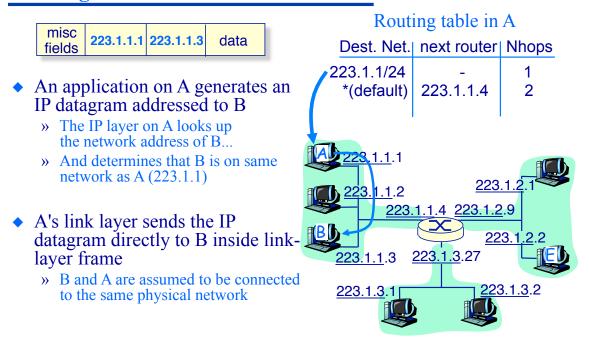

IP Addressing

Host address v. Network addresses

- IP address:
 - » Network part (high order bits)
 - » Host part (low order bits)
- What's a network?
 - » The set of devices that can communicate with each other without an intervening router
 - The devices attached to the same physical network
 - » From an IP address perspective its:
 - The set of device interfaces with IP addresses having a common network part



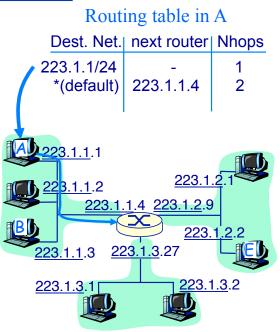
IP Addressing


Routing IP Datagrams

Example

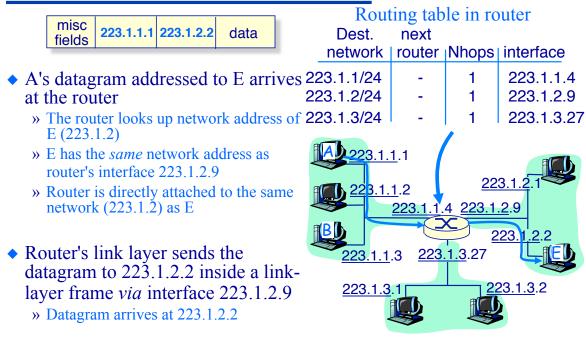
Routing IP Datagrams

Routing to a local destination



Routing IP Datagrams

Routing to a remote destination


misc 223.1.1.1 223.1.2.2 data

- Host A generates an IP datagram addressed to E
 - » The IP layer on A looks up up network address of E (223.1.2)
 - » A determines that E is NOT on same network as A
 - » A's routing table shows router 223.1.1.4 as the default for all networks
- A's link layer sends IP datagram to router inside link-layer frame

Routing IP Datagrams

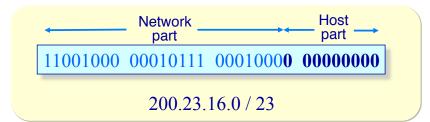
Routing to a remote destination

IP Addressing Class-Based (or classful) Addressing

CI	a	SS	A	L							1	. c).(0.	0	_	• 1	L2'	7.	25	5.	2!	55	. 2	25!	5										
0	N	11	1 N	N	11	1 N	[]	N	.F	I	H	H	H	F	H	H	H	H	.H	H	F	I I	H	H	H	H	I	H.H	I	H	H	H	H	H	H	н
				bi																				bit	-											
		(1)	28 1	net	wo	rks)													(16	,77	7,	21	6 I	105	sts	5)								
CI	a	SS	В						12	8	. 0	. 0).(0	-	1	.91	, - • 4	25	5.	25	5	. 2	55	5											
1	0	Ν	1 N	[]	11	1 N	[]	N .	Ν	Ν	11	N	Ν	Ν	[]	1	Ν	Ν	.H	H	I	ł	H	H	H	H		н.	I	H	H	H	H	H	H	H
									bit			_							16 bits																	
						(16,	,38	84	n	etv	VOI	rks	S)						(65,536 hosts)																	
CI	Class C 192.0.0.0 - 223.255.255.255																																			
1	1	0	Ν	11	11	JN	1]	Ν	N	1	1]	Ν	Ν	Ν	11	V	Ν	Ν	N	Ν	Ν	1	1	N	Ν	Ν	N	I .I	I	H	H	H	H	H	H	H
	21 bits (2,097,152 networks)																				oits 105	sts)														

IP Addressing Special IP Addresses

Prefix	Suffix	Address Type	Purpose
all-0s	all-0s	this computer	bootstrap
network	all-0s	network	network ID
network	all-1s	directed bcast	bcast on specified net
all-1s	all-1s	limited bcast	bcast on local net
127	any	loopback	testing


- 127.0.0.1 is the most popular address for loopback
- Private addresses available
 - » 10.0.0.0 10.255.255.255
 - » 172.16.0.0 172.31.255.255
 - » 192.168.0.0 192.168.225.255
 - (see RFC 1597)

IP Addressing Classless InterDomain Routing (CIDR)

- Why don't we use class-based addressing anymore?
- Today, we use subnet addressing, or classless addressing (CIDR)
- Netmask
 - » 32-bit number to identify which bits are network prefix in the IP address
 - » the network part bits are all 1 and the host part bits are all 0

IP Addressing

Classless InterDomain Routing (CIDR)

- Network portion of address has an arbitrary length
- Address format: a.b.c.d/x, where x is the number of bits in network portion of address
 - » used only in routing tables, not IP datagram source/ destination

IP Addressing Classless Addressing (CIDR)

With CIDR, 128.10.0.0 Class B address becomes 128.10.0.0/16

 » first 16 bits are network prefix » second 16 bits are host suffix 	1000000 00001010 00000000 00000000	128 10 0 0
	lost bart → 000000	
200.23.16.0 / 23		

/8	255.0.0.0	16777216	С
/9	255.128.0.0	8388608	
/10	255.192.0.0	4194304	
/11	255.224.0.0	2097152	
/12	255.240.0.0	1048576	
/13	255.248.0.0	524288	
/14	255.252.0.0	262144	
/15	255.254.0.0	131072	
/16	255.255.0.0	65536	С
/17	255.255.128.0	32768	IS
/18	255.255.192.0	16384	IS
/19	255.255.224.0	8192	IS
/20	255.255.240.0	4096	S
/21	255.255.248.0	2048	S
/22	255.255.252.0	1024	
/23	255.255.254.0	512	
/24	255.255.255.0	256	С
/25	255.255.255.128	128	La
/26	255.255.255.192	64	S
/27	255.255.255.224	32	S
/28	255.255.255.240	16	S
/29	255.255.255.248	8	
/30	255.255.255.252	4	
	E	•	

Class A

Class B

ISP / large business ISP / large business ISP / large business Small ISP / large business Small ISP / large business

Class C

Large LAN Small LAN Small LAN Small LAN

CIDR Addressing

Example

•	130	.127	.128.	0/20
---	-----	------	-------	------

» 20 bits network

» 12 bits host, $2^{12} = 4096$, 4094 assignable IPs

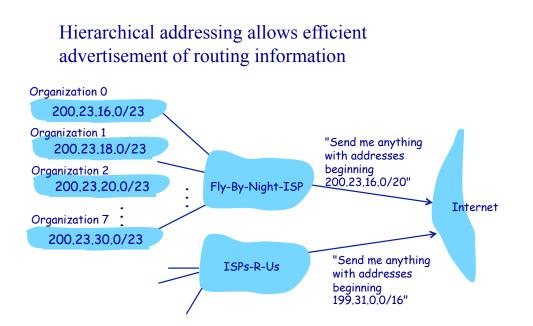
network:	130	127	128	0
	1000 0010	0111 1111	1000 0000	0000 0000
first addr:	130	127	128	1
	1000 0010	0111 1111	1000 0000	0000 0001
1	120	107	142	254
last addr:	130 1000 0010	127 0111 1111	143 1000 1111	254
	1000 0010	0111 1111	1000 1111	1111 1110
netmask:	255	255	240	0
	1111 1111	1111 1111	1111 0000	0000 0000

CIDR Addressing Problems

- ♦ 152.2.136.0/26
 - » How many assignable IP addresses?
 - » What is the range of assignable IP addresses?
 - » What is the proper netmask?

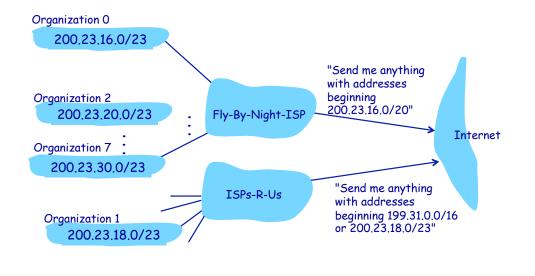
range: 130.127.64.129 - 130.127.64.134 and netmask: 255.255.255.248

» What is the CIDR address?


How does *network* get subnet part of IP addr?

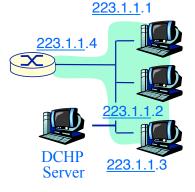
>> gets allocated portion of its provider ISP's address space

ISP's block	<u>11001000 0</u>	00010111	<u>0001</u> 0000	00000000	200.23.16.0/20
Organization 0	11001000 0	0010111	00010000	00000000	200.23.16.0/23
Organization 1	11001000 0	0010111	<u>0001001</u> 0	00000000	200.23.18.0/23
Organization 2	<u>11001000</u> 0	0010111	<u>0001010</u> 0	00000000	200.23.20.0/23
Organization 7	<u>11001000</u> 0	0010111	<u>0001111</u> 0	00000000	200.23.30.0/23


25

IP Addresses Hierarchical Addressing: route aggregation

IP Addresses Hierarchical Addressing: more specific routes

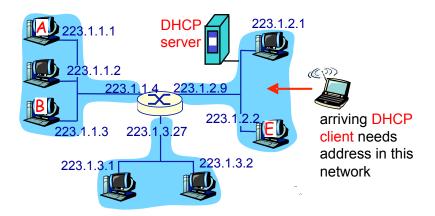

ISPs-R-Us has a more specific route to Organization 1

IP Addresses

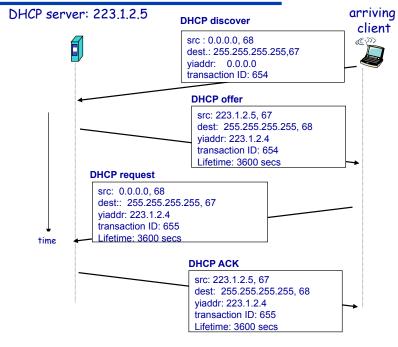
How are addresses assigned to a host?

- Static assignment:
 - » Configuration parameter (manually) set during system installation
- Dynamic assignment at boot/ wake-up time
 - » DHCP: Dynamic Host Configuration Protocol

IP Addresses DHCP: Dynamic Host Configuration Protocol

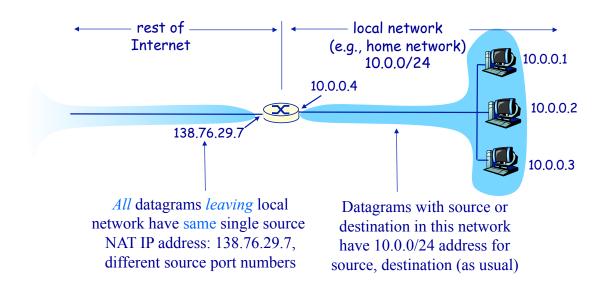

• Goal: allow host to dynamically obtain its IP address from network server when it joins network

- » can renew its lease on address in use
- » allows reuse of addresses (only hold address while connected and "on")
- » support for mobile users who want to join network


DHCP overview

- » host broadcasts "DHCP discover" msg
- » DHCP server responds with "DHCP offer" msg
- » host requests IP address: "DHCP request" msg
- » DHCP server sends address: "DHCP ack" msg

DHCP Client-Server Scenario



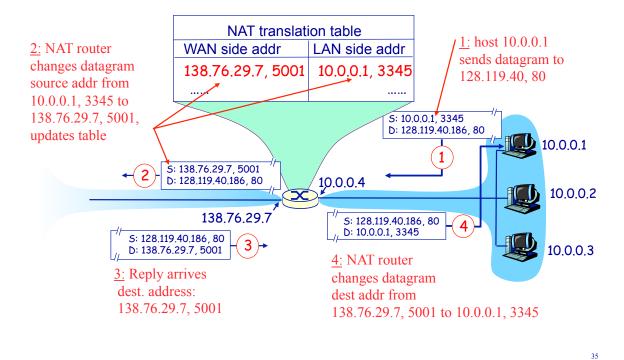
DHCP Client-Server Scenario

The Internet Network Layer

NAT: Network Address Translation

NAT: Network Address Translation Motivation

 Local network uses just one IP address as far as outside world is concerned:

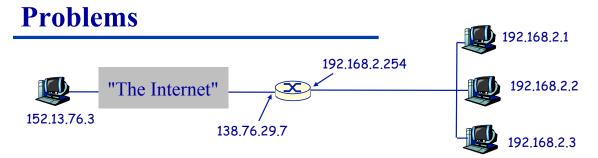

- » range of addresses not needed from ISP: just one IP address for all devices
- » can change addresses of devices in local network without notifying outside world
- » can change ISP without changing addresses of devices in local network
- » devices inside local net not explicitly addressable, visible by outside world (a security plus).

NAT: Network Address Translation Implementation

NAT router must:

- » outgoing datagrams: replace (source IP address, port #) of every outgoing datagram with (NAT IP address, new port #)
 - remote clients/servers will respond using (NAT IP address, new port #) as destination addr.
- » remember (in NAT translation table): every (source IP address, port #) to (NAT IP address, new port #) translation pair
- » incoming datagrams: replace (NAT IP address, new port #) in dest fields of every incoming datagram with corresponding (source IP address, port #) stored in NAT table

The Internet Network Layer NAT: Network Address Translation



NAT: Network Address Translation Controversy

- 16-bit port-number field:
 - » 60,000 simultaneous connections with a single LANside address!

NAT is controversial:

- » routers should only process up to layer 3
- » violates end-to-end argument
 - NAT possibility must be taken into account by app designers, eg, P2P applications
- » address shortage should instead be solved by IPv6

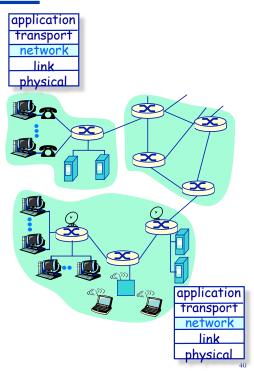
- 1) You are using 192.168.2.3 and want to access a web server running on 152.13.76.3.
 - a) What data is filled into the NAT table during connection setup?
 - b) What information is changed in the SYN and SYN/ACK packets leaving and entering your network?
- 2) You've setup a web server on 192.168.2.2 and want your friend at 152.13.76.3 to be able to access it.
 - a) What should you put in the NAT table at your router?
 - b) What address and port should you tell your friend to contact in order to reach your web server?

The Internet Network Layer

The Internet control message protocol ICMP

- Used by hosts, routers, gateways to communicate network-level information
 - » Error reporting: e.g., unreachable {host, network, port, protocol}
 - » Echo request/reply (used by *ping*)
- Provides network-layer functions logically "above" IP
 - » ICMP is encapsulated in IP datagrams
 - » ICMP is assigned a protocol number in the IP header just like TCP and UDP

Type	Code	description
0	0	echo reply (ping)
3	õ	network unreachable
3	1	host unreachable
3	2	protocol unreachable
3	3	port unreachable
3	6	network unknown
	0	
3	1	host unknown
4	0	source quench (congestion
		control - not used)
8	0	echo request (ping)
9	0	route advertisement
10	0	router discovery
11	0	TTL expired
12	0	bad IP header


 ICMP message: type + code + first 8 bytes of IP datagram triggering the ICMP message

IP Addressing

- **Problem:** We're running out of addresses
- Researchers at USC have mapped out the IP address space
 - » video/slides describing the experiment and graph: <u>http://www.isi.edu/ant/address/video/</u>
 - » interactive graph: http://www.isi.edu/ant/address/browse/

The Network Layer: Routing & Addressing Outline

- Network layer functions
- Virtual circuits and datagram networks
- Router architecture
- IP Internet Protocol
 - » Addressing
- Routing algorithms
 - » Least cost path computation algorithms
- Hierarchical routing
 - » Connecting networks of networks
- Routing on the Internet
 - » Intra-domain routing
 - » Inter-domain routing

