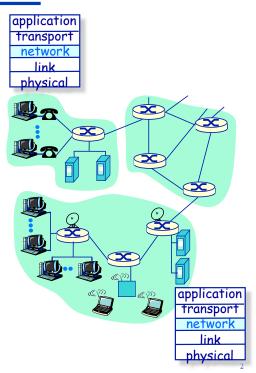
CS 455/555 Intro to Networks and Communications


The Network Layer: Routing in the Internet

Dr. Michele Weigle Department of Computer Science Old Dominion University mweigle@cs.odu.edu

http://www.cs.odu.edu/~mweigle/CS455-S13

The Network Layer: Routing & Addressing Outline

- Network layer functions
- Virtual circuits and datagram networks
- Router architecture
- ♦ IP Internet Protocol
 - » Addressing
- Routing algorithms
 - » Least cost path computation algorithms
- Hierarchical routing
 - » Connecting networks of networks
- Routing on the Internet
 - » Intra-domain routing
 - » Inter-domain routing

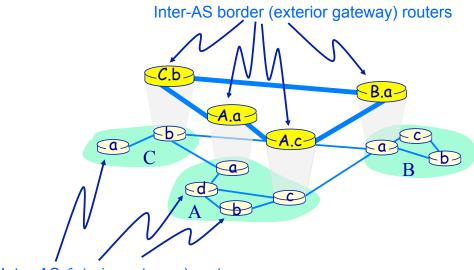
The Network Layer: Routing & Addressing Hierarchical routing

- The theory of routing: relatively simple algorithms with manageable shortcomings
- Critical assumptions:
 - » All routers are identical
 - » The network is "flat"

The reality: Routing is dominated by issues of scale

- » The Internet has 100 million hosts!
 - Can't store all host destinations in routing tables!
 - Routing table exchange would swamp links!
- » We must route to *networks*, not hosts
- Routing also dominated by issues of administrative autonomy
 - » The Internet is a network of networks each network owner may want to control routing in its own network

Hierarchical Routing

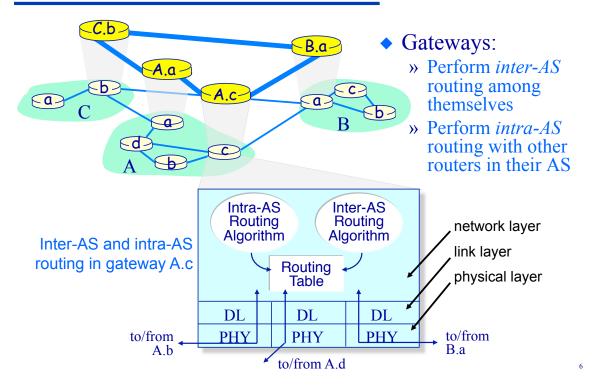

Gateway routers

- Aggregate routers into regions, "autonomous systems" (AS)
- All routers inside same AS run same routing protocol among themselves
 - » "*Intra-AS*" routing protocol
 - » Routers in different AS can run different *intra-AS* routing protocol

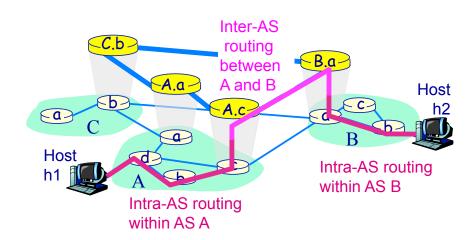
- Gateway routers

- Special routers in AS
- Run *intra-AS* routing protocol with all other routers inside AS
- Responsible for routing to destinations outside AS
 - » Also run *inter-AS* routing protocol with gateway routers in adjacent AS

Hierarchical Routing The Internet AS hierarchy



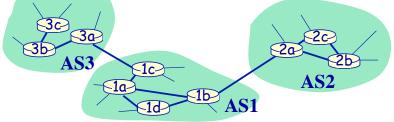
5


Intra-AS (interior gateway) routers

Hierarchical Routing

Intra-AS & Inter-AS Routing

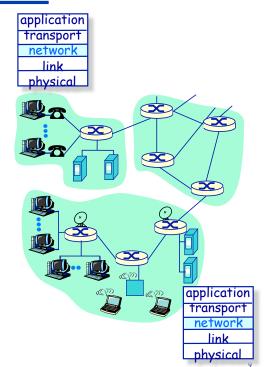
Hierarchical Routing Intra-AS & Inter-AS Routing


Hierarchical Routing

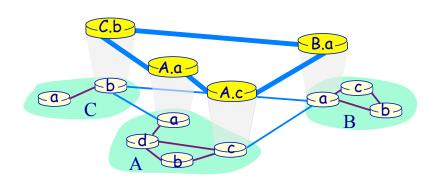
Inter-AS Tasks

- Suppose router in AS1 receives datagram destined outside of AS1:
 - » router should forward packet to gateway router, but which one?

AS1 must:

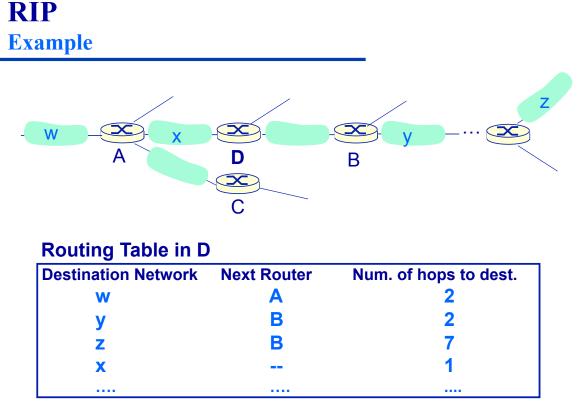

- learn which destinations are reachable through AS2, which through AS3
- 2. propagate this reachability info to all routers in AS1

This is the job of inter-AS routing!


The Network Layer: Routing & Addressing Outline

- Network layer functions
- Virtual circuits and datagram networks
- Router architecture
- IP Internet Protocol
 » Addressing
- Routing algorithms
 - » Least cost path computation algorithms
- ♦ Hierarchical routing
 - » Connecting networks of networks
- Routing on the Internet
 - » Intra-domain routing
 - » Inter-domain routing

The Internet AS Hierarchy

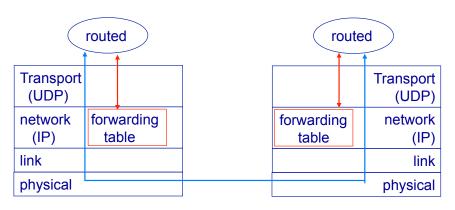

Intra-AS routing

- Also known as "Interior Gateway Protocols" (IGPs)
- Most common IGPs:
 - » RIP: Routing Information Protocol
 - » OSPF: Open Shortest Path First

Intra-AS Routing Routing Information Protocol (RIP)

- Distance vector-*like* algorithm
 » Commonly used in the early Internet
- Distance metric: Number of hops
 Maximum value = 15 hops (∞ = 16)
- Routing tables (including costs) are exchanged with adjacent nodes every 30 seconds via a Response Message (also called a "route advertisement")
 - » *Receiver* determines if adjacent node has found a new minimum cost to a destination
- Each advertisement consists of the minimum cost route for up to 25 destination networks

RIP Example

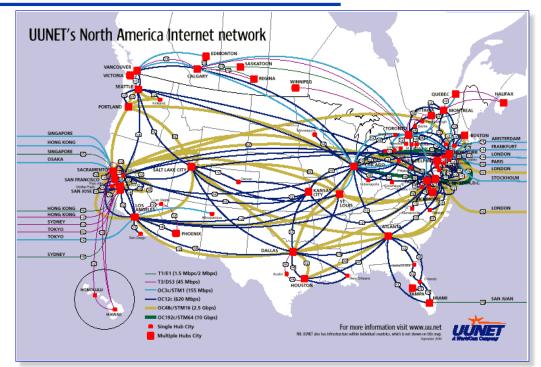

Dest Next Hops W - 1 X - 1	ertisement from	A to D
z C 4	/	Ζ
w x		- X y X
A	D	В
Routing Table in D	C	
Destination Network	Next Router	Num. of hops to dest.
W	Α	2
y	В	2
Z	XA	★5
x		1

RIP

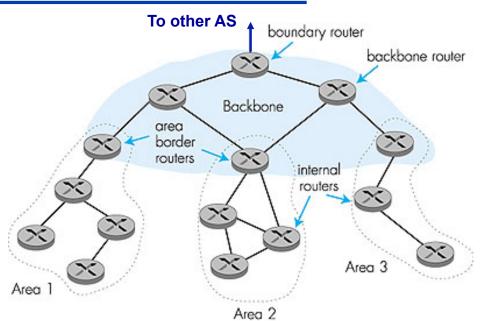
Link failure and recovery

- If no advertisement heard after 180 seconds, adjacent node/link declared "failed"
 - » Routes via that adjacent node invalidated
 - » New advertisements sent to other adjacent nodes
 - » Advertisement receivers in turn send out new advertisements (if their tables changed)
 - » Link failure information quickly propagates to entire net

- RIP routing tables managed by application-level process called route-d (daemon)
- Advertisements sent in UDP packets (port 520), periodically repeated


Intra-AS routing Open Shortest Path First (OSPF)

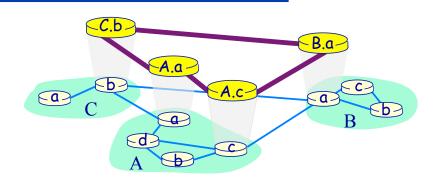
- "Open": publicly available
- Uses the Link State minimum cost path computation algorithm
 - » LS update flooding
 - » Topology map at each node
 - » Route computation using Dijkstra's algorithm
- OSPF advertisement carries one entry per adjacent node
- Advertisements disseminated to an entire AS (via flooding)


OSPF "Advanced" features (not in RIP)

- Security: all OSPF messages can be authenticated to prevent malicious intrusion
 - » TCP connections used in flooding
- Multiple same-cost paths can be used (only one path in RIP)
 - » packets in a connection may travel different paths even if routing tables don't change
- For each link, multiple cost metrics for different networklayer "services"
 - » (e.g., satellite link cost set "low" for best effort; high for real time)
- Hierarchical OSPF used in large networks

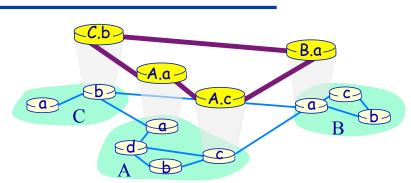
OSPF Why hierarchical OSPF?

OSPF Hierarchical OSPF



19

OSPF Hierarchical OSPF


- Two-level hierarchy: local area, backbone
 - » Link-state advertisements only in area
 - » Each area node has detailed area topology; only knows shortest path to networks in other areas
- Area Border Routers: "summarize" distances to networks in own area and advertise to other Area Border routers
- Backbone Routers: run OSPF routing limited to backbone
- Boundary Routers: connect to other AS

The Internet AS Hierarchy Inter-AS Routing

- Border Gateway Protocol (BGP) is the *de facto* standard
- BGP allows each subnet to advertise its existence to the rest of the Internet ("I'm here!")

Inter-AS Routing BGP

BGP provides each AS a means to:

- 1. Obtain subnet reachability information from neighboring ASs.
- 2. Propagate reachability information to all AS-internal routers.
- 3. Determine "good" routes to subnets based on reachability information and policy.

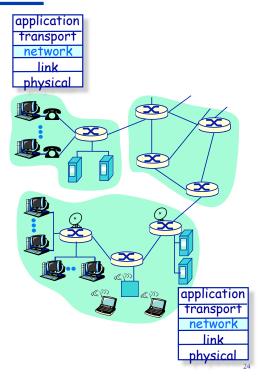
The Internet AS Hierarchy

Why different intra- and inter-AS routing?

Policy:

- » Inter-AS: administration wants control over how its traffic routed and who routes through its network
- » Intra-AS: single administration, so no "policy" decisions needed

Scale:


» Hierarchical routing saves table size, reduced update traffic

Performance:

- » Intra-AS: can focus on performance
- » Inter-AS: policy may dominate over performance

The Network Layer: Routing & Addressing Outline

- Network layer functions
- Virtual circuits and datagram networks
- Router architecture
- IP Internet Protocol
 - » Addressing
- Routing algorithms
 - » Least cost path computation algorithms
- Hierarchical routing
 - » Connecting networks of networks
- Routing on the Internet
 - » Intra-domain routing
 - » Inter-domain routing

