CS 455/555 Intro to Networks and Communications

Link Layer Addressing, Ethernet, and a Day in the Life of a Web Request

Dr. Michele Weigle Department of Computer Science Old Dominion University mweigle@cs.odu.edu

http://www.cs.odu.edu/~mweigle/CS455-S13/

Link Layer Outline

- Introduction and services
- Error detection and correction
- Multiple access protocols
- Link-layer addressing
- Ethernet
- Link-Layer switches
 » VLANs
- A Day in the Life...

Link-Layer Addressing Ethernet MAC addresses

IP address:

- 32-bit network-layer address
- used to get datagram to destination network

Ethernet (or MAC or physical) address:

- used to get datagram from one interface to another physically-connected interface (same network)
- 48-bit MAC address burned in the adapter ROM

Link-Layer Addressing

Ethernet MAC addresses

Each adapter has unique (in the universe) address
 Ethernet MAC address allocation administered by IEEE

 manufacturer buys portion of MAC address space (to assure uniqueness)

 MAC unstructured address => portability

Link-Layer Addressing ARP: Address Resolution Protocol

Link-Layer Addressing ARP protocol

- Host A knows B's IP address, wants to learn the MAC address of B
- A broadcasts ARP query packet, containing B's IP address
 - » destination MAC address: FF-FF-FF-FF-FF
 - » all hosts on Ethernet receive ARP query
- B receives ARP packet, replies to A with its (B's) MAC address
 » frame sent to A's MAC address
- A caches IP-to-MAC address pairs until information becomes old
- ARP is "plug-and-play"
 » nodes create their ARP tables without human intervention

- A finds 223.1.1.4 in routing table as default router
- A uses ARP to find 1A:23:F9:CD:06:9B as Ethernet address for 223.1.1.4
- A creates Ethernet frame with 1A:23:F9:CD:06:9B as destination
 - » Ethernet frame contains IP datagram in data field
- A's link layer (adapter driver) sends Ethernet frame

Routing IP Datagrams

Routing to a remote destination

misc

fields

223.1.1.1 223.1.2.2

data

- Router finds 223.1.2.9 in routing table as destination network interface
- Router uses ARP to find 49:BD:D2:C7:56:2A as Ethernet address for 223.1.2.2
- Router creates Ethernet frame with 49:BD:D2:C7:56:2A as destination;
 - » Ethernet frame contains IP datagram in data field
- Router's link layer (adapter driver) sends Ethernet frame

Link Layer Outline

- Introduction and services
- Error detection and correction
- Multiple access protocols
- Link-layer addressing
- Ethernet
- Link-Layer switches
 » VLANs
- A Day in the Life...

Link Layer Ethernet (IEEE 802.3)

"Dominant" wired LAN technology:

- cheap
 » \$20 for NIC
- first widely-used LAN technology
- simpler, cheaper than token LANs and ATM
- ◆ kept up with speed race: 10 Mbps 10 Gbps

TAP	TRANSCEIVER TRANSCEIVER INTERFACE CABLE INTERFACE	
TH		TERMINATOR

Metcalfe's Ethernet sketch

- Bus topology popular through mid 90s
 » all nodes in same collision domain (can collide with each other)
- Today: star topology prevails
 - » active switch in center
 - » each "spoke" runs a (separate) Ethernet protocol (nodes do not collide with each other)

Ethernet Frame Structure

- Sending adapter encapsulates IP datagram (or other network layer protocol packet) in Ethernet frame
- Preamble
 - » 7 bytes with pattern 10101010 followed by one byte with pattern 10101011
 - » used to synchronize receiver, sender clock rates

8 bytes	6 bytes	6 bytes t	2 oytes	46 to 1500 bytes	4 bytes		
Preamble	Destination Address	Source Address		Data	CRC		
Type							

• Addresses: 6 bytes each

- » if adapter receives frame with matching destination address, or with broadcast address (*e.g.* ARP packet), it passes data in frame to the network layer
- » otherwise, adapter discards frame
- Type: indicates higher layer protocol (mostly IP, but others possible, *e.g.*, Novell IPX, AppleTalk)
- CRC: checked at receiver, if error is detected, frame is dropped

13

Ethernet Manchester Encoding

- Bits encoded as voltage changes instead of fixed voltage
- 0 encoded with falling edge
- 1 encoded with rising edge
- Voltage change made exactly halfway through time slot
 - » need for *preamble*

Ethernet Unreliable, connectionless

- Connectionless: No handshaking between sending and receiving NICs
- Unreliable: receiving NIC doesn't send ACKs or NAKs to sending NIC
 - » stream of datagrams passed to network layer can have gaps (missing datagrams)
 - » gaps will be filled if app is using TCP
 - » otherwise, app will see gaps
- Ethernet's MAC protocol: unslotted CSMA/CD

Ethernet CSMA/CD algorithm

- NIC receives datagram from network layer, creates frame
- If NIC senses channel idle, starts frame transmission
 » if channel busy, waits until channel idle, then transmits
- If NIC transmits entire frame without detecting another transmission, NIC is done with frame
- If NIC detects another transmission while transmitting, aborts and sends jam signal
- After aborting, NIC enters *exponential backoff* » After *m*th collision, NIC chooses *K* at random from {0,1,2,...,2^m-1}
 - » NIC waits K·512 bit times, tries to send (sense channel)

Ethernet CSMA/CD algorithm (more)

Jam Signal

- » make sure all other transmitters are aware of collision
- » 48 bits

• Bit time

- » $0.1 \ \mu s$ for 10 Mbps Ethernet
- » for *K*=1023, wait time is about 50 ms

Exponential Backoff

- Goal: adapt retransmission attempts to estimated current load
 - » heavy load: random wait will be longer
- first collision
 - » choose K from $\{0,1\}$
 - » delay is K ⋅ 512 bit transmission times
- after second collision
 - » choose *K* from $\{0, 1, 2, 3\}$...
- after ten collisions
 - » choose *K* from {0,1,2,3,4,...,1023}

17

Ethernet Collision Detection

- 10 Mbps Ethernet has max length of 2500 meters
 - » worst-case RTT about 50 µs (microseconds)
- Min frame must take at least worst-case RTT to transmit
 - $\, \ast \,$ at 10 Mbps, can transmit 500 bits in 50 μs
 - » number rounded to 512 bits (64 bytes)

CSMA/CD Efficiency

- t_{prop} = max prop delay between 2 nodes in LAN
- t_{trans} = time to transmit max-size frame

$$efficiency = \frac{1}{1 + 5t_{prop}/t_{trans}}$$

- Efficiency goes to 1
 - » as t_{prop} goes to 0
 - » as t_{trans} goes to infinity
- Better performance than ALOHA
- Simple, cheap, decentralized

802.3 Ethernet

Standards: Link & Physical Layers

- Common MAC protocol and frame format
- Different speeds: 2 Mbps, 10 Mbps, 100 Mbps, 1 Gbps, 10 Gbps
- Different physical layer media: fiber, cable

Link Layer Outline

- Introduction and services
- Error detection and correction
- Multiple access protocols
- Link-layer addressing
- Ethernet
- Link-Layer switches
 » VLANs
- ◆ A Day in the Life...

21

Link Layer Hubs

- Physical-layer ("dumb") repeaters:
 - » bits coming in one link go out all other links at same rate
 - » all nodes connected to hub can collide with one another
 - » no frame buffering
 - » no CSMA/CD at hub: host NICs detect collisions

- Link-layer device: smarter than hubs, take active role
 - » store, forward Ethernet frames
 - » examine incoming frame's MAC address, *selectively* forward frame to one-or-more outgoing links when frame is to be forwarded on segment, uses CSMA/CD to access segment

Transparent

» hosts are unaware of presence of switches

Plug-and-play, self-learning

» switches do not need to be configured

Switches

Allows multiple simultaneous transmissions

- Hosts have dedicated, direct connection to switch
- Switches buffer packets
- Ethernet protocol used on *each* incoming link, but no collisions; full duplex
 - » each link is its own collision domain
- switching: A-to-A' and B-to-B' simultaneously, without collisions
 - » not possible with dumb hub

switch with six interfaces (1,2,3,4,5,6)

Switches Table

- How does switch know that A' reachable via interface 4 and B' reachable via interface 5?
 - » each switch has a *switch table*
 - » each entry contains
 - * MAC address of host
 - interface to reach host
 - ✤ timestamp
- How are entries created, maintained in switch table?
 - » something like a routing protocol?

switch with six interfaces (1,2,3,4,5,6)

> Source: A Dest: A'

25

Switches Self-learning A A A' • Switch learns which hosts can be reached through C which interfaces » when frame received. switch "learns" location of sender: incoming LAN segment » records sender/location pair in switch table B' MAC addr interface TTL Switch table Α 1 60 (initially empty)

Switches Frame filtering/forwarding

When frame received:

Switches Interconnecting switches

• Switches can be connected together

Sending from A to F - how does S₁ know to forward frame destined to F via S₄ and S₂?

» Self learning! (works exactly the same as in single-switch case!)

29

Switches Institutional network

Switches vs. Routers

Both store-and-forward devices

- » routers: network layer devices (examine network layer headers)» switches are link layer devices
- Routers maintain routing tables, implement routing algorithms
- Switches maintain switch tables, implement filtering, learning algorithms

Hubs vs. Switches vs. Routers

- Hubs
 - » physical layer devices
 - » connected devices share bandwidth
 - all hosts / networks connected to a 10 Mbps hub share 10 Mbps
 - » all connections must be same physical layer speed
- Routers
 - » network layer devices (Layer 3)
 - » MAC address and IP address
 - » run routing algorithm for forwarding
 - » forwards based on IP destination address

- Switches
 - » link layer devices (Layer 2)
 - » connected devices do not share bandwidth
 - each host / network connected to a 10 Mbps switch gets 10 Mbps
 - » can handle different physical layer speeds
 - » no MAC address
 - » forwards based on MAC destination address

Link Layer Virtual LANs (VLANs)

What's wrong with this picture?

What happens if:

• CS user moves office to EE, but wants connect to CS switch?

Single broadcast domain:

- all layer-2 broadcast traffic (ARP, DHCP) crosses entire LAN (security/privacy, efficiency issues)
- each lowest level switch has only few ports in use

VLANs

Port-based VLAN

- *traffic isolation:* frames to/ from ports 1-8 can *only* reach ports 1-8
 - » can also define VLAN based on MAC addresses of endpoints, rather than switch port
- *dynamic membership:* ports can be dynamically assigned among VLANs
- forwarding between VLANS: done via routing (just as with separate switches)
 - » in practice vendors sell combined switches plus routers

VLANs Spanning multiple switches

- *trunk port:* carries frames between VLANS defined over multiple physical switches
 - » frames forwarded within VLAN between switches can't be vanilla 802.1 frames (must carry VLAN ID info)
 - » 802.1q protocol adds/removed additional header fields for frames forwarded between trunk ports

Chapter 5: Summary

- Principles behind data link layer services:
 - » error detection, correction
 - » sharing a broadcast channel: multiple access
 - » link layer addressing
- Instantiation and implementation of various link layer technologies
 - » Ethernet
 - » switched LANs
 - » VLANs

- Introduction and services
- Error detection and correction
- Multiple access protocols
- Link-layer addressing
- Ethernet
- Link-Layer switches
 » VLANs
- A Day in the Life...

38

Synthesis A day in the life of a web request

Our journey down the protocol stack is complete!
 » application, transport, network, link

• Let's put it all together

- » Goal: identify, review, understand protocols (at all layers) involved in seemingly simple scenario: requesting www page
- » Scenario: student attaches laptop to campus network, requests/receives www.google.com

A Day in the Life... Scenario

A Day in the Life... Connecting to the Internet

 Connecting laptop needs to get its own IP address, addr of first-hop router, addr of DNS server

» use DHCP

- DHCP request encapsulated in UDP, encapsulated in IP, encapsulated in 802.1 Ethernet
- Ethernet frame broadcast (dest: FFFFFFFFFFFFFF) on LAN, received at router running DHCP server
- Ethernet demux'ed to IP demux'ed to UDP demux'ed to DHCP

A Day in the Life...

- DHCP server formulates DHCP ACK containing client's IP address, IP address of first-hop router for client, name & IP address of DNS server
 - encapsulation at DHCP server, frame forwarded (switch learning) through LAN, demultiplexing at client
 - DHCP client receives DHCP ACK reply

Client now has IP address, knows name & addr of DNS server, IP address of its first-hop router

A Day in the Life... ARP (before DNS, before HTTP)

- Before sending HTTP request, need IP address of www.google.com: DNS
- DNS query created, encapsulated in •• UDP, encapsulated in IP, encapsulated in Eth. In order to send frame to router, need MAC address of router interface: **ARP**
- **ARP query** broadcast, received by ٠. router, which replies with **ARP reply** giving MAC address of router interface

- query forwarded via LAN switch from client to 1st hop router
- Datagram demux'ed to DNS server
- DNS server replies to client with IP address of www.google.com

A Day in the Life... **TCP connection carrying HTTP** HTTP HTTP SYNACK TCP SYNACK IP Eth SYNACK Phy * To send HTTP request, client first opens TCP socket to web server TCP SYN segment (step 1 in 3-way handshake) inter-SYNACK TCP domain routed to web server SYNACK IP Eth SYNACK ✤ Web server responds with TCP Phy **SYNACK** (step 2 in 3-way handshake) web server 64.233.169.105 **TCP connection established!** •••

