VAD Chapter 4 — Analysis
Supplemental Slides

CS 725/825
Michele Weigle

Nested Model

L Domain situation
@ Data/task abstraction
Visual encoding/interaction idiom

m Algorithm

Fig 4.2, VAD, Munzner

Domain Situation p——

m Algorithm

Each domain has its own vocabulary for
describing data and problems

Common pitfall: Cutting corners by making
assumptions rather than actually talking to
target users

Outcome: A detailed set of questions asked
about or actions carried out by target users

Data/Task Abstraction |

m Algorithm

Abstracting specific domain questions and data into a
generic representation

Task blocks are identified by the designer
— browsing, comparing, summarizing, ...

Abstract data blocks are designed
— use original data, transform data, derive data, ...

Many vis idioms are specific to a particular data type

— which data type would support a visual representation of
the data that addresses the user’s problem

Data/task abstraction

Visual Encoding/Interaction

* Decide on the specific way to create and
manipulate the visual representation of the
abstract data block

 Visual encoding idiom
— controls exactly what users see

* Interaction idiom
— controls how users change what they see

Algorithm i
g O r I t Visual encoding/interaction idiom

e Algorithm used to instantiate the idiom

* Deals mainly with computer graphics
implementation details

* In most cases, we’re using d3 constructs to build
the idioms, so we have no control over the
underlying rendering algorithm

* Some may use this level in efficiently loading/pre-
filtering data to reduce interaction delay

@ Threat Wrong problem L .
domain situation
(& Validate Observe and interview target users

@ Threat Wrong task/data abstraction data/task abstraction

@ Threat Ineffective encoding/interaction idiom yisual encoding /

(¢ Validate Justify encoding/interaction design interaction idiom

@ Threat Slow algorithm

(validate Analyze computational complexity algorithm

/- Implement system
(& validate Measure system time/memory

(Vvalidate Qualitative/quantitative result image analysis
Test on any users, informal usability study

(& Validate Lab study, measure human time/errors for task

(@ validate Test on target users, collect anecdotal evidence of utility
(¢ Validate Field study, document human usage of deployed system

(# Validate Observe adoption rates

Fig 4.5, VAD, Munzner

Observe and interview target users

Domain Validation

Observe adoption rates

 Threat: Problem is mis-characterized

* Immediate Validation: Field Study
— investigator observes how people act in real-world
settings

* Downstream Validation: Adoption Rates
— how many people are actually using the system

o o o Implement system
Abstraction Validation =
get users, collect
anecdotal evidence of utility

Field study, document human
usage of deployed system

* Threat: Wrong task/data abstraction
* Immediate Validation: None

 Downstream Validation: Test the system

— by target users doing their own work

Justify encoding/interaction design

Implement system

I d i O m Va I i d a t i O n Qualitative/quantitative result image

analysis

Test on any users, informal usability study
Lab study, measure human time/errors
for task

* Threat: Ineffective encoding/interaction idiom

* Immediate Validation: justification

— carefully justify the design of the idiom with respect to known
perceptual and cognitive principles

* Downstream Validation: qualitative image analysis, quality
metrics, lab study
— qualitative discussion of results, usage scenarios — show
examples
— quality metrics — quantitative measurement of result images
(e.g., number of edge crossings)
— lab study — controlled experiment in lab setting

Justify encoding/interaction design

Implement system

I d i O m Va I i d a t i O n Qualitative/quantitative result image

analysis

Test on any users, informal usability study
Lab study, measure human time/errors
for task

* Threat: Ineffective encoding/interaction idiom

* Immediate Validation: justification

— carefully justify the design of the idiom with respect to known
perceptual and cognitive principles “~__VYour project papers
should have these
* Downstream Validation: qualitative image analysis, quality
metrics, lab study

— qualitative discussion of results, usage scenarios — show
examples

— quality metrics — quantitative measurement of result images
(e.g., number of edge crossings)

— lab study — controlled experiment in lab setting

Analyze computational

Algorithm Validation

Implement system

Measure system time/memory

e Threat: Slow algorithm

* Immediate Validation: analyze complexity
— use standard algorithm analysis methods

— based on number of items in the dataset or pixels in the
display

* Downstream Validation: measure performance

— measure wall-clock time and memory performance for the
implemented algorithm

— typical consideration is how dataset size affects algorithm
speed

Example

1 Observe and interview target users

Justify encoding/interaction design

Measure system time/memory

Qualitative result image analysis

Fig 4.9, VAD, Munzner

Domain

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 12, NO. 5, SEPTEMBER/OCTOBER 2006

MatrixExplorer: a Dual-Representation System to Explore
Social Networks

Nathalie Henry and Jean-Daniel Fekete

Abstract— i isa network isualization system that uses two mpmenhuons node-link diagrams and matrices. Its
design comes from a list of after several it and 2 design session conducted with
social science researchers. Although matrices are commonly used in social networks analysis, very few systems support the
matrix-based representations to visualize and analyze networks.

MatrixExplorer provides several novel features to support the exploration of social networks with a matrix-based representation, in
addition to the standard interactive filtering and clustering functions. It provides tools to reorder (layout) matrices, to annotate and
compare findings across different layouts and find consensus among several clusterings. MatrixExplorer also supports Node-link
diagram views which are familiar to most users and remain a convenient way to publish or communicate exploration results.
Matrix and node-link representations are kept synchronized at all stages of the exploration process.

Index Terms— social networks visualization, node-link diagrams, trix-based i expl y process, matrix
ordering, interactive clustering, consensus.

Fig. 1. i showing two

of the same network: matrix on the left and node-link on the right.

1 Observe and interview target users

Justify encoding/interaction design

- Measure system time/memory

Qualitative result image analysis

Fig 4.9, VAD, Munzner

3 EXPLORATORY ANALYSIS REQUIREMENTS

several interviews, we organized a participatory design session with
professional social science researchers, selected for their frequent use
of social network analysis tools. The participants included: a

3 ;@ soc

historians and five compuler science researchers in the fields of HCI
and Information Visualization. We focused on three specific
questions:

1. How would you like to create a social network?

2. How would you like to edit a created social network?

3. How would you like to explore an unknown social network?

The session was organized in four stages. First, we presented
participants the state-of-the-art tools in the domain of social network
analysis and a broad range of novel HCI and InfoVis techniques for
interacting with graphs and data. We explicitly avoided guiding
them towards specific design techniques or tools. In the second
stage, they split into small groups and generated ideas in a
brainslorming session, which were then ranked. In the third stage,
participants captured their ideas by creating paper prototypes (Figure
2) and then filming what it would be like to interact with them”. In
the last stage, we reviewed the ideas altogether and gathered the
common and important ones. Summarizing the working sessions,
we ended up with a list of requirements for social networks
exploratory analysis.

Fig. 2. Video Brai ning showing a historian describing her ideas
about using matrix-based representations to compare two networks.

Encoding/Interaction - Immediate

L Observe and interview target users

Justify encoding/interaction design

Measure system time/memory

Qualitative result image analysis

Fig 4.9, VAD, Munzner

justify encoding

2.2 Matrix-Based Representations

justify interaction

4.1 Coupling node-link diagrams and matrices

MatrixExplorer is based on two representations: matrix-based and
node-link diagrams ing the first requi of our users (R).
Node-link and matrix visualizations are synchronized in order to let
the user work with both representations, switching smoothly from
one to the other.

Multiple visualizations are synchronized by selection and
filtering. Basically, if a user selects a set of actors in the matrix, this
same set will be selected in all other visualizations (selection) and
data filtered in one visualization will disappear from all others
(filtering). Selection improves the transition from one representation
to the other and constitutes the core of the coupling. Filtering
preserves the coherence of the visualizations by presenting the same
data, even if the attributes visualized are different.

In addition, visualizations can be synchronized by any visual
attribute, simply by interactively setting the same attribute for the
same visual variable. Thus, the user still has the possibility to not
synchronize the visualizations in order to compare two attributes.

Bertin in “Semiology of graphics™ [S] introduced visual matrices With our system, users explore their networks using both
to represent networks. Ghoniem et al. [18] showed that matrices representations, accomplishing tasks more easily with one
outperform node-link diagrams for large graphs or dense graphs in representation or the other and visualizing the effect of a selection, or
several low-level reading tasks, except path finding. Bertin showed filtering, on all visualizations and their overviews. .
that matrices can be used to exhibit high-leve! structures by finding Figure 3 shows a dual-representation of a co-authoring network

good permutations of their rows and columns.
matrices as “reorderable”. Reordering rows and columns of an
adjacency matrix is similar to computing the layout for a node-link
diagram: finding a layout that reveals some structure in the data.

and the correspondence of visual patterns in matrix and node-link
representations. The process to obtain both representations follows:
the user first automatically ordered the matrix, identified clusters
(communities) and attributed colors to identify them. He then
switched to a node-link diagram, displaying the community colors

Related works can be divided into two categories: automatic and and laying the network out manually in order to better visualize how

interactive systems.

communities are linked and organized. Finally, moving back and
forth between both representations, he identified the global structure

Algorithm

L Observe and interview target users

Justify encoding/interaction design

Measure system time/memory

Qualitative result image analysis

Fig 4.9, VAD, Munzner

of the network.

To do this, we use the matrix of shortest paths (SP matrix) instead of
the adjacency matrix. Our algorithm is:

Compute connected components

For each component

Compute the SP matrix
Compute a matrix of distances between rows
Apply the algorithm to find a linear order
Compute a matrix of distances between columns
Apply the algorithm to find a linear order

End for.

Connected components are independent blocks in the adjacency
matrix so an order for their rows and columns is computed for each
of them. Computing the SP matrix improves notably the order
quality: it reduces the impact of noise (which is important in real
datasets) and gives more information for low degree vertices (for
which the rows and columns are very sparse). Computing the SP
matrix is quadratic, as is the computation of the distance matrix for
rows and the distance matrix for the columns. This has an important
impact, since we want to use automatic ordering interactively.
Therefore, we chose two fast ordering algorithms from the
bioinformatics field. The first one is based on a hierarchical
clustering, followed by a seriation (HCS) and is described in [14];
the second one is based on the traveling salesman problem (TSP) as
presented i [9). . WC USC a last heuristic descrll
[21). Matrices up to 1000 rows* 1000 columns can be ordered in
seconds. Ordering larger matrices introduces a noticeable delay.

not provide us wi Ving a connect
component larger than a thousand actors. However, we are
investigating faster algorithms such as AMADO [7].

Encoding/Interaction - Downstream

L Observe and interview target users

Figure 6 presents a matrix reordered using TSP. The resulting matrix exhibits clearer
blocks (diagonal with dense blocks); users can identify more clusters (R10) and

Justify encoding/interaction design

Measure system time/memory

Qualitative result image analysis

articulation vertices between these clusters as dark color crosses here. A well-ordered
matrix also helps identify outliers (R11) such as isolated relations, missing relation in a
community, or actor with special connection patterns.

Fig 4.9, VAD, Munzner

Fig. 10. Lasso selection on values visualization mode and resulting

cluster visualization.

E N = 0 L
Fig. 6 Initial order (left) and TSP order (right). Colors represent clusters found by the user.
Clusters are different in the two representations. Users found more clusters with TSP order.
Headers red indicators (right) represents the distance between adjacent rows/columns.

Evaluation Paper

Not all papers have
(or even should
have) validation for
every level

Lab study, measure human time/errors for task time series plots, we asked subjects to simultaneously view

Sizing the Horizon: The Effects of Chart Size and Layering
on the Graphical Perception of Time Series Visualizations
Jeffrey Heer', Nicholas Kong”, and Maneesh Agrawala’

! Computer Science Department 2 Computer Science Division
Stanford University University of California, Berkeley
Stanford, CA 94305 USA Berkeley, CA 94720-1776 USA
jheer@cs.stanford.edu {nkong, maneesh} @cs.berkeley.edu
ABSTRACT (a)
We i ig hni for visualizing time series data

and evaluate their effect in value comparison tasks. We

zrap

P
a range of chart

time series vi

(b)
sizes, measuring the speed and accuracy of subjects’
i of value diffe t charts. We identify
in significantly differing drops in estimation accuracy across (c)
the compared chart types, and we find optimal positions in A A A A

the mej-acquzcy F‘ﬂ‘;de"ff C“‘;"e Z‘m"’h@ VIEWETS Figure 1. (a) Filled line chart. Area between data values on
performed quickly without atiendant drops in accuracy. line and zero s filled in. (b) “Mirrored” chart. Negative

Based on these results, we propose approaches for values are flipped and colored red, cutting the chart height
increasing data density that optimize graphical perception. by half. (c) 2-band horizon graph. The chart is divided into
bands and overlaid, again halving the height.

In both experiments, subjects completed discrimination and
estimation tasks for points on time series graphs. Since the
use case of horizon graphs is to compare data across several

two separate graphs and compare a point on one graph to a
point on the other, as shown in Figure 3. Subjects first
reported which point represented the greater value and then
estimated the absolute difference between the two. For each
trial, we measured the estimation error as the absolute
difference between a subject’s estimation and the actual
value difference between comparison points.

What-Why-How Table

* There are some nice examples of how to frame this in Chapter 15.

* For each of the visualization tools, there's a table that describes
things like "what: data", "what: derived", "why: tasks", "how:
encode".

— what — see Chapter 2

— why —see Chapter 3

— how: encode — see Chapters 7-10
— how: manipulate — see Chapter 11
— how: facet — see Chapter 12

— how: reduce — see Chapters 13-14

* The "what" and "why" tasks should be driving how you developed
the "how".

* Your system may not include all of the “how” items, but you need
to address the ones that it does have.

System Scagnostics

What: Data Table.

What: Derived Nine quantitative attributes_ per §catterp|ot
(pairwise combination of original attributes).

Why: Tasks [dentify, compare, and summarize; distributions
and correlation.

How: Encode Scatterplot, scatterplot matrix.

How: Manipulate Select.

How: Facet Juxtaposed small-multiple views coordinated
with linked highlighting, popup detail view.

Scale Original attributes: dozens.

Scagnostics SPLOM

uuuuuuuu

Wilkinson, Anand, Grossman. “Graph-Theoretic Scagnostics”, InfoVis 2005 3

ssssss

nnnnnnnn

System
What: Data

Seo, Shneiderman. “Interactively Exploring
Hierarchical Clustering Results”, IEEE Computer, 2002

