Vehicular Networks

Introduction to Vehicular Networks

Dr. Michele Weigle
Department of Computer Science
Old Dominion University
mweigle@cs.odu.edu

http://www.cs.odu.edu/~mweigle/courses/cs795-s07/http://www.cs.odu.edu/~mweigle/courses/cs895-s07/

CS 795/895 Spring 2007 Weigle

Intro to Vehicular Networks

Outline

- Motivation
- Common Terms
- Applications
- Current Efforts
- Network Issues
- Security Issues

From EPFL research group

Motivation

From trekearth.com

CS 795/895

Spring 2007

Weigle

2

Intro to Vehicular Networks

Common Terms

- ◆ Intelligent transportation systems (ITS)
- ◆ Inter-vehicular communication (IVC)
- ◆ Mobile ad-hoc network (MANET)
- ◆ Vehicular ad-hoc network (VANET)
- ◆ Vehicle-to-vehicle (V2V) communication
- ♦ Vehicle-to-infrastructure (V2I) communication

Categories of Applications

- ◆ Informative / Warning Systems
 - » traffic information
 - » weather warnings
- Longitudinal Control
 - » collision avoidance/warning
 - » "look-through" obstructions to avoid accidents
 - » platooning
- Co-operative Assistance Systems
 - » intersections
 - » highway entrances

CS 795/895

Spring 2007

Weigle

5

Intro to Vehicular Networks

Approaches

- ◆ V2V only (zero infrastructure, purely ad-hoc)
 - » require no outside infrastructure or roadside devices
 - » vehicles communicate with each other to determine traffic situation
 - » how many vehicles need to use the system to get high quality information?
 - » what kind of attacks on the system are possible?
- ◆ V2V and V2I
 - » requires some outside infrastructure, often in the form of roadside devices
 - » infrastructure can provide aggregation/processing, encryption key distribution, access to larger network
 - » how many roadside devices are needed?

V2V / V2I Architecture

Spring 2007

Weigle

Current Efforts

Government / Industry Supported

CS 795/895

Japan

» VICS - www.vics.or.jp/english/

Europe

- » Car2Car Consortium www.car-2-car.org
- » CarTALK 2000 www.cartalk2000.net
- » FleetNet www.et2.tu-harburg.de/fleetnet/english

US

- » PATH www.path.berkeley.edu
- » Federal Highway Administration's Vehicle Infrastructure Integration (VII) - www.its.dot.gov/vii/

Current Efforts

V2V Approaches

- Mobile Computing Lab / Osaka University
 - » www-higashi.ist.osaka-u.ac.jp/research/inter-vehicle-ad-hoc-communication-protocol2.html
- e-Road Project / Rutgers
 - » discolab.rutgers.edu/traffic/
- SOTIS / Technical University of Hamburg-Harburg
 - » Self-Organizing Traffic Information System
 - » www.et2.tu-harburg.de/Mitarbeiter/Wischhof/sotis/sotis.htm
- CarNet / MIT
 - » SIGOPS 2000

CS 795/895 Spring 2007

Weigle

Q

Current Efforts

V2I/V2V Approaches

- Chisalita / Linkoping University / Sweden
 - » focused on collision avoidance/warning
 - » peer-to-peer approach
 - » vehicles and roadside infrastructure are all peers
- Rubinet Group / UC-Davis
 - » VGrid vehicular-based computing grid
 - » fixed roadside sensors, in-vehicle sensors, Central Coordination Center, changeable message signs
 - » example application: lane merging
 - » www.ece.ucdavis.edu/rubinet/vmesh.html

Current Efforts

V2I/V2V Approaches

- Ott / University of Bremen / Germany
 - » Drive-thru Internet
 - » only V2I (roadside Internet access points)
 - » study of limitations of connectivity
- Sampigethaya / UW and University of Tokyo
 - » CARAVAN
 - » group navigation
 - » techniques for avoiding tracking of vehicles (privacy)
 - » roadside infrastructure for access to location server

CS 795/895 Spring 2007 Weigle 11

Intro to Vehicular Networks

Network Issues

- Radio
 - » DSRC in US
 - * 75 MHz spectrum
 - ❖ 5.9 GHz band (5.850 to 5.925 GHz)
 - ❖ 802.11-based technology
- MAC/PHY
 - » WLAN (802.11) vs. 3G (CDMA)
- Network
 - » routing protocols
 - take advantage of GPS/road topology
 - » broadcast
 - flooding algorithms

Security/Privacy Issues - Challenges

- Authentication vs. Privacy
 - » want to bind each driver to a single identity
- Availability
 - » only 50-60% of vehicle's neighbors will receive a broadcast message (based on evaluation of DSRC)
- ◆ Low Tolerance for Error
 - » especially in collision avoidance/warning systems
- Mobility
 - » each vehicle has a constantly shifting set of neighbors
- ♦ Key Distribution
 - » when/where to install keys? how many to install? who is certification authority?

Bryan Parno and Adrian Perrig. Challenges in Securing Vehicular Networks, HotNets 2005.

CS 795/895

Spring 2007

Weigle

13

Intro to Vehicular Networks

Security/Privacy Issues - Adversaries

- Greedy Drivers
 - » convince neighbors that congestion is ahead to clear roads
- Snoops
 - » driver profiling, tracking
- Pranksters
 - » hack things "just for fun"
- Industrial Insiders
 - » if mechanics are in charge of uploading software, they can load malicious programs
- Malicious Attackers
 - » terrorists, criminals with specific targets in mind

Bryan Parno and Adrian Perrig. Challenges in Securing Vehicular Networks, HotNets 2005.

Security/Privacy Issues - Attacks

- Denial of Service (DoS)
 - » overwhelm a vehicle's resources or jam communication channels
 - » malicious attacker
- Message Suppression
 - » selectively drop packets, suppress congestion alerts
 - » prankster
- Fabrication
 - » broadcast false information into network
 - » greedy driver
- Alteration
 - » alter existing data, replaying earlier transmissions, disrupt voting mechanisms
 - » malicious attacker

Bryan Parno and Adrian Perrig. Challenges in Securing Vehicular Networks, HotNets 2005.

CS 795/895

Spring 2007

Weigle

15

Intro to Vehicular Networks

Future Topics

- ◆ Data Dissemination / Aggregation
- Security / Privacy
- ◆ Simulators
- Automatic Incident Detection
- ◆ LISA (ODU's approach)
- Evacuation Issues
- Driver Distraction
- Others?

References

- ◆ J. Luo and J.-P. Hubaux. A survey of inter-vehicle communication. Technical Report, School of Computer and Communication Sciences, EPFL, 2004.
- ◆ A. Martin, H. Marini, and S. Tosunoglu, Intelligent Vehicle / Highway System: A Survey, Florida Conference on Recent Advances in Robotics, 1999.
- US DOT. Incident management: Detection, verification, and traffic management, 1998.
- ◆ I. Chisalita and N. Shahmehri. A Novel Architecture for Supporting Vehicular Communication, VTC Fall 2002.
- ◆ J. Ott and D. Kutscher, Drive-thru Internet, INFOCOM 2004.
- K. Sampigethaya et al. CARAVAN: Providing Location Privacy for VANET, ESCAR 2005
- Bryan Parno and Adrian Perrig. Challenges in Securing Vehicular Networks, HotNets 2005.