Traffic Monitoring and Incident Management

Mike Fontaine, P.E., Ph.D.

Civil and Environmental Engineering

Old Dominion University

Today's Talk

- Current approaches to monitoring traffic
 - Sensor technologies
 - Role of Traffic Management Centers
- Incident management approach
 - Incident identification
 - Incident response
- Emerging monitoring technologies

Traffic Monitoring

- State and local departments of transportation (DOTs) are primary players
- Federal government requires monitoring of major roads
 - Off-line, archived speed and volume data
- Most large cities also collect real-time data on major facilities

" Old Dominion UNIVERSITY

3

Traffic Monitoring

- Amount of traffic data varies widely depending on facility and area
- Urban freeways
 - Most heavily instrumented (0.5-1 mile sensor spacings)
 - Often have real-time data
 - Often try to provide feedback on congestion back to drivers
 - Data is often archived for future usage

Traffic Monitoring

- Urban arterial roads
 - Data collected at signals and select midblock locations
 - Data often not archived
- Rural roads
 - Data collected at relatively few locations (VDOT has 300 monitoring stations for over 55,000 miles of road)
 - Data not available in real time

" Old Dominion UNIVERSITY

5

Traffic Monitoring

- Most monitoring now done with point sensors
 - Collect detailed data at specific, fixed locations
 - Sometimes creates problems when extrapolated to surrounding areas
- Typical technologies
 - Inductive loops
 - Radar and microwave sensors
 - Video detection
 - Acoustic sensors
 - Piezoelectric sensors

Inductive Loop Detectors

- Most widely used sensor technology
- Detects the presence of metal objects passing over the loop
- One of the oldest detection technologies and still widely used

" Old Dominion UNIVERSITY

7

Inductive Loops

- Advantages:
 - Agencies are familiar with sensors and equipment
 - Lots of "legacy" equipment in place
 - Collects very detailed data where installed
- Disadvantages:
 - Cost: \$40,000 to install on multilane freeway + \$5,000 annually to maintain
 - Prone to failure due to traffic and weather
 - Maintenance requires closing lanes
 - May weaken pavements due to saw cuts

Inductive Loops

- Placement
 - Traffic signal approaches
 - Between interchanges on freeways
- Paired loops collect:
 - Volume
 - Vehicle class
 - Traffic speed
 - Vehicle occupancy (% of time that detector is on, related to density of traffic)

OldDominionUNIVERSITY

9

Interstate 66 Eastbound from Route 234 to Route 243 (14.8 miles)

- Average Actual Travel Times
- ----- Actual 97.5 / 2.5th Percentile Limits
 - Retrospective Extrapolation Estimate
- Retrospective Extrapolation Estimate with Half-Mile Link Errors Added

Inductive Loops

- In Virginia, many loops are not functional
- Recent data from Hampton Roads shows 30-40% of detectors not returning any valid data
- Many more have intermittent outages

OldDominionUNIVERSITY

11

Microwave and Radar

- Non-intrusive detectors
- Collect speed and volume
- Often used as a lowcost was to supplement loops in urban areas

Microwave and Radar

 Occlusion can be a problem with these detectors (trucks blocking other cars)

OldDominionUNIVERSITY

13

Video Detection

- Uses cameras and video detection software to create "virtual loops"
- Primarily used at intersections, but some freeway applications also

OldDominionUNIVERSITY

Video Detection

- Collects speeds and counts
- Recent advances to apply technology using existing CCTV cameras on freeways
- Video data stream usually not archived

11117 (

Video Detection

- Advantages:
 - Not impacted by repaving
 - Relatively reliable and non intrusive
- Disadvantages
 - Set up is critical
 - Prone to occlusion from large vehicles
 - Can have problems at night and in fog

Acoustic

- Passive and active acoustic detectors
- Count and classify vehicles by lane
- Speeds are estimated, but more suspect
- Results generally not very promising so far

OldDominionUNIVERSITY

17

Piezoelectric sensors

- Primarily used for weigh-in-motion systems
- · Limited application for speed sensing
- · Not commonly used

Traffic Management Centers

- · Gathers, synthesizes, and disseminates information
- · Controls various infield equipment
- Coordination point for stakeholders

" Old Dominion UNIVERSITY

Elements of Congestion

- Recurring
 - Created by over capacity operation
 - Predictable, and countermeasures can be developed
- Non-recurring
 - Caused by crashes, breakdowns, special events, construction, and other incidents
 - Sometimes difficult to predict, responses have to be flexible
 - Estimated to account for 50-60% of all urban congestion

Effects of Incidents

- · Disabled vehicles on shoulder
 - 26% reduction in capacity
- 3-lane road with one lane blocked
 - 50% reduction in capacity
- 3-lane road with 2 lanes blocked
 - 76% reduction in capacity

OldDominionUNIVERSITY

23

Impacts of Incidents

- Congestion
 - Each minute that a lane is blocked created 5 minutes of delay
- Safety
 - Stop-and-go traffic creates the potential for secondary crashes (usually rear ends)
 - Shockwave on Freeway

Incident Management

- Most large urban areas in the U.S. have incident management programs to try to deal with non-recurring congestion
 - Identify when something has occurred
 - Respond and clear the incident as quickly as possible
 - Provide information to drivers on delays

OldDominionUNIVERSITY

25

Incident Detection

- Methods
 - Automated methods using sensor data
 - Phone calls from the public
 - CCTV
 - Police or motorist assistance patrols

Automated Incident Detection Algorithms

- A number of incident detection algorithms have been developed and tested
- Rely on data from sensors to identify problems
- Developed for freeways, not transferable to arterial roads
- Measures of effectiveness
 - Detection rate
 - False alarm rate
 - Mean time to detection

" Old Dominion UNIVERSITY

27

Commonly Cited Algorithms

- Approaches:
 - Pattern recognition (California methods)
 - Statistical and times series (ARIMA methods)
 - Macroscopic models (McMaster)
 - Neural networks
- Have to be calibrated to specific conditions at a site (significant effort)

Incident Detection Algorithms

- California algorithms are most popular
 - Compare detector occupancies to predefined threshold values
- False alarm rate is per algorithm application
 - Ex: every 20 sec = 6 false alarms/day for CA #7

Algorithm	Detection Rate	False Alarm Rate	Mean Time to Detect
California #7	67%	0.134%	2.91 min
McMaster	68%	0.0018%	2.2 min

" Old Dominion UNIVERSITY

29

Incident Detection Algorithms

- Used more often before cell phone use was widespread
- Field deployments of automated methods have faired relatively poorly
- Sensor limitations make application difficult
- 2/3 of TMCs surveyed do not use automated methods at all

Common Methods Used to Identify Incidents

- Initial notification
 - Call from the public
 - Call from police or DOT field worker
 - Media reports
- Verification
 - CCTV
 - Incident detection algorithm

" Old Dominion UNIVERSITY

31

Incident Response

- State DOTs and local governments often fund freeway service patrols (FSPs)
- FSPs travel regular "beats" to enable quick response on major corridors
 - Address minor problems (out of gas, change a tire, clear debris)
 - Call tow trucks or emergency responders
 - Provide traffic control, if needed

Scope of Problem – 1 yr in No. VA

- 44,255 assists by FSP (6/1/04-5/31/05)
- 29% were crashes
- 198 miles of freeway covered
- Averages to 121 assists/day
- About 15% (18/day)
 block at least 1 lane

OldDominionUNIVERSITY

33

Average Time Lane Blocked

Information Dissemination

- Websites
- Highway advisory radio
- Variable message signs
- Media
- 511 system

OldDominionUNIVERSITY

35

San Antonio Web Interface

Alerting Drivers to Congestion

- DOTs are often reluctant to provide specific route guidance
- Usually use messages like "Delays Ahead" rather than telling drivers to exit.

" Old Dominion UNIVERSITY

37

Recent Trends in Traffic Monitoring

- Private sector is becoming more heavily involved in traffic monitoring
 - Data becomes a commodity which is sold to media, private citizens, DOTs
- Greater interest in learning "true" travel times on routes
- Lots of interest in probe-vehicle based systems

Emerging Monitoring Technologies

- Automatic vehicle identification (AVI) based systems (tracking toll tags)
- Automatic vehicle location (AVL) based systems (tracking transit or fleet vehicles)
- Wireless location technology (anonymous tracking of cell phones)
- Vehicle Infrastructure Integration communication between vehicle and roadside

" Old Dominion UNIVERSITY

39

AVI

- Builds off of electronic toll collection technology
- Transponders communicate with roadside equipment through DSRC
- Additional antennae installed along corridor
- Transponders register as they pass antennae

" Old Dominion UNIVERSITY

41

AVI

- Advantages:
 - True point to point data
- Disadvantages
 - Requires a significant proportion of cars to be equipped with transponders to have consistent data flow
 - Can measure speeds, but not volumes

AVL

- GPS-based locations provided for fleet of transit or commercial vehicles
- Location data mined to determine travel times
- Successfully used by some cities
- Private sector getting involved here

OldDominionUNIVERSITY

43

AVL

- Advantages
 - True point-to-point data
 - No infrastructure to install (unless you do roadside beacons)
- Disadvantages
 - Smaller number of probes, less reliability for mean speed estimation
 - No volume data can be generated

Wireless Location-Based Technology

- Anonymously tracks cell phone locations, and generates traffic condition data
- 3rd party vendor works with cellular company to gain access to data, which is then sold to DOTs or media outlets
- Technology is still evolving, and business model not well established

" Old Dominion UNIVERSITY

45

WLT-Based Monitoring

- Technology is evolving
- Most rely on mining phone handoffs from cellular companies

<u>™</u> Ol

46

WLT-based Monitoring

- Data to data has not been adequate to support traffic monitoring
- Errors > 20 mph common on arterial roads, better results on freeway
- Recent trends have been promising

" Old Dominion UNIVERSITY

47

Vehicle-Infrastructure Integration

- Supported by Federal Highway Administration
- Consortium of universities, auto manufacturers, and state DOTs involved
- Full scope of program still being defined

VII Use Cases

- Vehicle-vehicle (Lane change warnings, road condition warning)
- Vehicle-infrastructure (signal violation warnings)
- Vehicle-Enterprise (electronic payment)
- Vehicle-Internet (media downloads, gas/ food/lodging search)
- Vehicle Probes (aggregate data for traffic purpose)

" Old Dominion UNIVERSITY

49

VII Status

- Laboratory construction and application development underway in Detroit
- · Economic feasibility being explored
- Auto industry doing other work in parallel
- In mid-2007, proof-of-concept testing over 20 square mile area near Detroit

Summary

- Right now, agencies rely on point sensors
- Methods to detect incidents are relatively low tech
- Increasing move to probe based methods, with many new techniques in development
- Big potential payoff if we can reduce the impact of non-recurring congestion

OldDominionUNIVERSITY

51