Traffic Monitoring and Incident Management

Mike Fontaine, P.E., Ph.D.
Civil and Environmental Engineering
Old Dominion University

Today’s Talk

• Current approaches to monitoring traffic
 – Sensor technologies
 – Role of Traffic Management Centers
• Incident management approach
 – Incident identification
 – Incident response
• Emerging monitoring technologies
Traffic Monitoring

- State and local departments of transportation (DOTs) are primary players
- Federal government requires monitoring of major roads
 - Off-line, archived speed and volume data
- Most large cities also collect real-time data on major facilities

Traffic Monitoring

- Amount of traffic data varies widely depending on facility and area
- Urban freeways
 - Most heavily instrumented (0.5-1 mile sensor spacings)
 - Often have real-time data
 - Often try to provide feedback on congestion back to drivers
 - Data is often archived for future usage
Traffic Monitoring

- Urban arterial roads
 - Data collected at signals and select midblock locations
 - Data often not archived
- Rural roads
 - Data collected at relatively few locations (VDOT has 300 monitoring stations for over 55,000 miles of road)
 - Data not available in real time

Traffic Monitoring

- Most monitoring now done with point sensors
 - Collect detailed data at specific, fixed locations
 - Sometimes creates problems when extrapolated to surrounding areas
- Typical technologies
 - Inductive loops
 - Radar and microwave sensors
 - Video detection
 - Acoustic sensors
 - Piezoelectric sensors
Inductive Loop Detectors

- Most widely used sensor technology
- Detects the presence of metal objects passing over the loop
- One of the oldest detection technologies and still widely used

Inductive Loops

- Advantages:
 - Agencies are familiar with sensors and equipment
 - Lots of “legacy” equipment in place
 - Collects very detailed data where installed

- Disadvantages:
 - Cost: $40,000 to install on multilane freeway + $5,000 annually to maintain
 - Prone to failure due to traffic and weather
 - Maintenance requires closing lanes
 - May weaken pavements due to saw cuts
Inductive Loops

- Placement
 - Traffic signal approaches
 - Between interchanges on freeways
- Paired loops collect:
 - Volume
 - Vehicle class
 - Traffic speed
 - Vehicle occupancy (% of time that detector is on, related to density of traffic)
Inductive Loops

- In Virginia, many loops are not functional
- Recent data from Hampton Roads shows 30-40% of detectors not returning any valid data
- Many more have intermittent outages

Microwave and Radar

- Non-intrusive detectors
- Collect speed and volume
- Often used as a low-cost way to supplement loops in urban areas
Microwave and Radar

- Occlusion can be a problem with these detectors (trucks blocking other cars)

Video Detection

- Uses cameras and video detection software to create “virtual loops”
- Primarily used at intersections, but some freeway applications also
Video Detection

- Collects speeds and counts
- Recent advances to apply technology using existing CCTV cameras on freeways
- Video data stream usually not archived

Video Detection

- Advantages:
 - Not impacted by repaving
 - Relatively reliable and non intrusive
- Disadvantages
 - Set up is critical
 - Prone to occlusion from large vehicles
 - Can have problems at night and in fog
Acoustic

- Passive and active acoustic detectors
- Count and classify vehicles by lane
- Speeds are estimated, but more suspect
- Results generally not very promising so far

Piezoelectric sensors

- Primarily used for weigh-in-motion systems
- Limited application for speed sensing
- Not commonly used
Traffic Management Centers

- Gathers, synthesizes, and disseminates information
- Controls various in-field equipment
- Coordination point for stakeholders

Functions of a TMC

- Surveillance: Vehicle Detectors, Environmental Sensors, Closed Circuit Television, Incident Detection
- Lane Use Control: Main Lane Metering, Shoulder Utilization, Reversible Signs
- Ramp Control: Ramp Metering, Ramp Closure
- Internet Computer Access, Lane Control Signals, Telephone "Hot Lines"
- Highway Advisory Radio, In-Vehicle Displays, Changeable Message Signs
- Kiosk, Radio/TV
- Work Zones, Special Events/Major Emergencies, Removal Strategies
- Information Dissemination, Incident Management
Elements of Congestion

- Recurring
 - Created by over capacity operation
 - Predictable, and countermeasures can be developed

- Non-recurring
 - Caused by crashes, breakdowns, special events, construction, and other incidents
 - Sometimes difficult to predict, responses have to be flexible
 - Estimated to account for 50-60% of all urban congestion
Effects of Incidents

• Disabled vehicles on shoulder
 – 26% reduction in capacity
• 3-lane road with one lane blocked
 – 50% reduction in capacity
• 3-lane road with 2 lanes blocked
 – 76% reduction in capacity

Impacts of Incidents

• Congestion
 – Each minute that a lane is blocked created 5 minutes of delay
• Safety
 – Stop-and-go traffic creates the potential for secondary crashes (usually rear ends)
 – Shockwave on Freeway
Incident Management

- Most large urban areas in the U.S. have incident management programs to try to deal with non-recurring congestion
 - Identify when something has occurred
 - Respond and clear the incident as quickly as possible
 - Provide information to drivers on delays

Incident Detection

- Methods
 - Automated methods using sensor data
 - Phone calls from the public
 - CCTV
 - Police or motorist assistance patrols
Automated Incident Detection Algorithms

- A number of incident detection algorithms have been developed and tested
- Rely on data from sensors to identify problems
- Developed for freeways, not transferable to arterial roads
- Measures of effectiveness
 - Detection rate
 - False alarm rate
 - Mean time to detection

Commonly Cited Algorithms

- Approaches:
 - Pattern recognition (California methods)
 - Statistical and times series (ARIMA methods)
 - Macroscopic models (McMaster)
 - Neural networks
- Have to be calibrated to specific conditions at a site (significant effort)
Incident Detection Algorithms

• California algorithms are most popular
 – Compare detector occupancies to predefined threshold values
• False alarm rate is per algorithm application
 – Ex: every 20 sec = 6 false alarms/day for CA #7

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Detection Rate</th>
<th>False Alarm Rate</th>
<th>Mean Time to Detect</th>
</tr>
</thead>
<tbody>
<tr>
<td>California #7</td>
<td>67%</td>
<td>0.134%</td>
<td>2.91 min</td>
</tr>
<tr>
<td>McMaster</td>
<td>68%</td>
<td>0.0018%</td>
<td>2.2 min</td>
</tr>
</tbody>
</table>

Incident Detection Algorithms

• Used more often before cell phone use was widespread
• Field deployments of automated methods have fared relatively poorly
• Sensor limitations make application difficult
• 2/3 of TMCs surveyed do not use automated methods at all
Common Methods Used to Identify Incidents

- Initial notification
 - Call from the public
 - Call from police or DOT field worker
 - Media reports

- Verification
 - CCTV
 - Incident detection algorithm

Incident Response

- State DOTs and local governments often fund freeway service patrols (FSPs)
- FSPs travel regular “beats” to enable quick response on major corridors
 - Address minor problems (out of gas, change a tire, clear debris)
 - Call tow trucks or emergency responders
 - Provide traffic control, if needed
Scope of Problem – 1 yr in No. VA

- 44,255 assists by FSP (6/1/04-5/31/05)
- 29% were crashes
- 198 miles of freeway covered
- Averages to 121 assists/day
- About 15% (18/day) block at least 1 lane

Average Time Lane Blocked

<table>
<thead>
<tr>
<th>Roadway</th>
<th>1 Lane</th>
<th>2 Lanes</th>
<th>3 Lanes</th>
<th>4 or more lanes</th>
</tr>
</thead>
<tbody>
<tr>
<td>I-66</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-95</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rte. 267</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-395</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-495</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-395 HOV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-95 HOV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Information Dissemination

- Websites
- Highway advisory radio
- Variable message signs
- Media
- 511 system

San Antonio Web Interface

Map data is updated every 5 minutes. You may have to reload if your browser doesn’t automatically refresh. Click on a roadway segment for speed information. Click on other icons for more details.
Alerting Drivers to Congestion

• DOTs are often reluctant to provide specific route guidance
• Usually use messages like “Delays Ahead” rather than telling drivers to exit.

Recent Trends in Traffic Monitoring

• Private sector is becoming more heavily involved in traffic monitoring
 – Data becomes a commodity which is sold to media, private citizens, DOTs
• Greater interest in learning “true” travel times on routes
• Lots of interest in probe-vehicle based systems
Emerging Monitoring Technologies

- Automatic vehicle identification (AVI) based systems (tracking toll tags)
- Automatic vehicle location (AVL) based systems (tracking transit or fleet vehicles)
- Wireless location technology (anonymous tracking of cell phones)
- Vehicle Infrastructure Integration – communication between vehicle and roadside

AVI

- Builds off of electronic toll collection technology
- Transponders communicate with roadside equipment through DSRC
- Additional antennae installed along corridor
- Transponders register as they pass antennae
AVI

- Advantages:
 - True point to point data

- Disadvantages
 - Requires a significant proportion of cars to be equipped with transponders to have consistent data flow
 - Can measure speeds, but not volumes
AVL

• GPS-based locations provided for fleet of transit or commercial vehicles
• Location data mined to determine travel times
• Successfully used by some cities
• Private sector getting involved here

AVL

• Advantages
 – True point-to-point data
 – No infrastructure to install (unless you do roadside beacons)

• Disadvantages
 – Smaller number of probes, less reliability for mean speed estimation
 – No volume data can be generated
Wireless Location-Based Technology

- Anonymously tracks cell phone locations, and generates traffic condition data
- 3rd party vendor works with cellular company to gain access to data, which is then sold to DOTs or media outlets
- Technology is still evolving, and business model not well established

WLT-Based Monitoring

- Technology is evolving
- Most rely on mining phone handoffs from cellular companies
WLT-based Monitoring

- Data to data has not been adequate to support traffic monitoring
- Errors > 20 mph common on arterial roads, better results on freeway
- Recent trends have been promising

Vehicle-Infrastructure Integration

- Supported by Federal Highway Administration
- Consortium of universities, auto manufacturers, and state DOTs involved
- Full scope of program still being defined
VII Use Cases

• Vehicle-vehicle (Lane change warnings, road condition warning)
• Vehicle-infrastructure (signal violation warnings)
• Vehicle-Enterprise (electronic payment)
• Vehicle-Internet (media downloads, gas/food/lodging search)
• Vehicle Probes (aggregate data for traffic purpose)

VII Status

• Laboratory construction and application development underway in Detroit
• Economic feasibility being explored
• Auto industry doing other work in parallel
• In mid-2007, proof-of-concept testing over 20 square mile area near Detroit
Summary

• Right now, agencies rely on point sensors
• Methods to detect incidents are relatively low tech
• Increasing move to probe based methods, with many new techniques in development
• Big potential payoff if we can reduce the impact of non-recurring congestion