
Sync� TCP in High-Speed Environments
Ayoob Khan

akhan@clemson.edu
Dhaval M. Shah

dshah@clemson.edu
Zhenyu Xu

zxu@clemson.edu
Clemson University, Department of Computer Science, 101 McAdams Hall, Clemson, SC 29634.

Research Advisor: Dr. Michele Weigle
Category: Graduate

1. PROBLEM AND MOTIVATION
The congestion control mechanism in TCP was first introduced by
Jacobson in [7], which was later developed into TCP Tahoe. Since
then, various end-to-end congestion control protocols have been
proposed, including Reno [2], NewReno [6], SACK [4], and
Vegas [3]. Among these protocols, TCP Reno is the standard
congestion control algorithm for TCP traffic, according to [2].
However, TCP Reno detects congestion only when a packet loss
occurs, i.e., when the sender receives duplicate
acknowledgements (ACKs) or experiences a timeout. Hence,
there are no explicit congestion notifications to end systems.

Sync-TCP [13] is a newly proposed end-to-end congestion control
protocol. It is based on TCP Reno, but it can detect congestion
before a packet loss occurs. This is done with the help of one-way
transit times (OTTs). These OTTs provide richer congestion
signals which in turn can be used to change the congestion
window more effectively.

In recent years, the Internet has seen great growth in data
transmission speed. However in high-speed networks, TCP
congestion control is limiting the throughput [10]. There are
several protocols proposed to deal with this problem, such as
FAST TCP [8], High-Speed TCP [5], Scalable TCP [9], and BIC-
TCP [12]. FAST TCP uses RTTs to detect congestion; however,
all of the other high-speed protocols implement loss-based
congestion detection.

In this paper, we present a modification to Sync-TCP which
provides better throughput and performance than TCP Reno in
high-speed environments. We carry out simulations in ns-2 [1]
and compare our results with Reno and original Sync-TCP.

2. BACKGROUND AND RELATED WORK
Sync-TCP [11,13] is an end-to-end congestion control mechanism
that makes use of one-way transit times (OTTs) in detecting
network congestion. It is based on the idea of implementing the
time-stamp option of TCP on the end systems. The forward path
queuing delays can be determined by subtracting the minimum
observed OTT from the current OTT. OTTs can determine the
forward path queuing delays better than RTTs, because with RTTs

there is no way to effectively distinguish if the congestion
occurred in the forward path or the reverse path. Sync-TCP also
compares the weighted average to a threshold based on an
estimate of the maximum amount of queuing delay in the network
to report the trend and where the average computed queuing delay
lies. Sync-TCP traces the average computed queuing delay into
one of four regions: 0-25%, 25-50%, 50-75%, and 75-100% of the
maximum-observed queuing delay.

In order to perform the trend analysis, Sync-TCP gathers nine
samples of average computed queuing delays, and splits them into
three groups of three samples. Then median, mi (i = 0, 1, 2), of
each of these groups is computed. The trend is determined to be
increasing if m0 < m2. The trend is determined to be decreasing if
m0 > m2. Sync-TCP keeps computing a new trend every three new
ACKs. Each time an ACK is received, Sync-TCP either reports
one of eight congestion indications or that not enough samples
have been gathered to compute the trend.

Figure 1 Sync-TCP Congestion Reactions [11]

Sync-TCP uses the AIMD congestion window adjustment
algorithm with some changes in the addition (α) and
multiplication (β) parameters. Sync-TCP reacts corresponding to
the trend and the region of computed average queuing delay.
Figure 1 shows the actions taken by Sync-TCP in response to each
of the eight possible congestion indications.

3. APPROACH AND UNIQUENESS
To reduce the probability of packet loss and retain a good sending
rate, we made a change to the Sync-TCP implementation.

The reason that Sync-TCP performs worse than Reno in the slow-
start phase is because the maximum increment of the congestion
window size is 50% of window size per RTT for Sync-TCP,
whereas Reno doubles its congestion window size per RTT. To
allow Sync-TCP grow its congestion window faster in slow-start
phase, we let the Sync-TCP behave like Reno-TCP in slow start

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citatio on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

43rd ACM Southeast Conference, March 18-20, 2005, Kennesaw, GA,
USA. Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

until the size of congestion window reaches a pre-determined
value Clow. Then the size of the congestion window is increased
by a fixed rate of α0, until the congestion window size reaches
another value Chigh. Once the congestion window size exceeds
Chigh, Sync-TCP resumes its original behavior, changing its
congestion window size.

The constant increasing rate of congestion window size between
Clow and Chigh provides smooth switching from Reno behavior to
Sync-TCP behavior. Without this phase, the increment of
congestion window size in Reno phase will lead to abrupt changes
in the queuing delays, which are used by Sync-TCP algorithm to
detect congestion. By applying this modification on Sync-TCP,
the performance of Reno on low-end and the performance of
Sync-TCP on high-end are combined to form a congestion control
that leads to better performance for the entire time period.

In our algorithm, we set Clow=100, Chigh=150, and α0=0.375 for
the modified version of Sync-TCP. These parameters are chosen
to balance the performance of Reno and Sync-TCP. To get better
result, Clow should be set as high as possible as long as there is no
packet loss in the Reno phase, and the Chigh should be set such that
the interval between Clow and Chigh is large enough to separate the
Reno phase and the Sync-TCP phase. The value of α0 should be
picked to accommodate the average increasing rate of congestion
window size of Sync-TCP.

4. RESULTS AND CONTRIBUTIONS
We ran simulations with two-way TCP traffic using the ns
network simulator [1] for 25 seconds. We had a single source
node and destination node and two finite-buffer droptail
intermediate routers. Table 1 enlists the experimental cases.

Table 1 Experimental Cases

 Bandwidth Propagation
delay for
each link

Maximum
Congestion

Window

Low speed 10 Mbps 10 ms 50

High speed 100 Mbps 10 ms 500

For the low speed networks, the congestion window for TCP
Reno took 0.4 seconds to reach the window size of 50. But Sync-
TCP takes 0.85 seconds to attain the same window size. It is due
to the fact that the rate of increase of the congestion window size
of Sync-TCP is less when compared to that of TCP Reno. After
making the above modification, Sync-TCP behaves exactly like
TCP Reno, thereby giving an improved congestion window size.

For the scenario of high speed environment (shown in Figure 2),
Sync-TCP reached its maximum window size in 8 seconds, when
TCP Reno could not reach this size until 25 seconds. But the
performance of original Sync-TCP is somewhat deteriorated due
to the packet losses. If these losses could be reduced, then the
throughput of Sync-TCP can be further improved. Modified
Sync-TCP avoids the early packet loss and is able to achieve its
maximum window size in only 4 seconds. This clearly shows that
allowing Sync-TCP to behave like Reno during the slow start
phase up to some threshold value leads to a great improvement in
the throughput on high speed environments.

Figure 2 TCP Reno vs. Sync-TCP vs. Modified Sync-TCP

5. REFERENCES
[1] S. McCanne and S. Floyd. ns Network Simulator.
http://www.isi.edu/nsnam/ns/, 2004.

[2] M. Allman, V. Paxson, and W. R. Stevens. TCP Congestion
control. RFC 2581, April 1999.

[3] L. Brakmo, S. O'Malley, and L. Peterson. TCP Vegas: New
techniques for congestion detection and avoidance. In Proceedings
of ACM SIGCOMM 1994, page 2435, 1994.

[4] K. Fall and S. Floyd. Simulation-based comparisons of Tahoe,
Reno, and Sack TCP, Computer Communication Review, 26(3):5
(21, July 1996).

[5] S. Floyd. Highspeed TCP for large congestion windows. RFC
3649, December 2003.

[6] S. Floyd and T. Henderson. The NewReno Modification to
TCP's Fast Recovery Algorithm. RFC 2582, 1999.

[7] V. Jacobson. Congestion avoidance and control. In
Proceedings of the SIGCOMM 88 Symposium, 1988.

[8] C. Jin, D. X. Wei, and S. H. Low. Fast TCP: motivation,
architecture, algorithms, performance. In Proceedings of IEEE
INFOCOM, March 2004.

[9] T. Kelly. Scalable TCP: Improving performance in highspeed
wide area networks, 2003.

[10] J. Kurose and K. Ross. Computer Networking: A Top-Down
Approach Featuring the Internet. Addison-Weasley, 3rd edition,
2004.

[11] M. C. Weigle. Investigating the Use of Synchronized Clocks
in TCP Congestion Control. PhD thesis, University of North
Carolina at Chapel Hill, August 2003.

[12] L. Xu, K. Harfoush, and I. Rhee. Binary increase congestion
control for fast long-distance networks. In Proceedings of IEEE
INFOCOM, March 2004.

[13] M.C. Weigle, K. Jeffay, and F.D. Smith, Delay-Based Early
Congestion Detection and Adaptation: Impact on web
performance, Computer Communications: The International
Journal for the Computer and Telecommunications Industry,
accepted November 2004, to appear.

