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1. PROBLEM AND MOTIVATION 
The congestion control mechanism in TCP was first introduced by 
Jacobson in [7], which was later developed into TCP Tahoe. Since 
then, various end-to-end congestion control protocols have been 
proposed, including Reno [2], NewReno [6], SACK [4], and 
Vegas [3]. Among these protocols, TCP Reno is the standard 
congestion control algorithm for TCP traffic, according to [2]. 
However, TCP Reno detects congestion only when a packet loss 
occurs, i.e., when the sender receives duplicate 
acknowledgements (ACKs) or experiences a timeout. Hence, 
there are no explicit congestion notifications to end systems. 

Sync-TCP [13] is a newly proposed end-to-end congestion control 
protocol. It is based on TCP Reno, but it can detect congestion 
before a packet loss occurs. This is done with the help of one-way 
transit times (OTTs). These OTTs provide richer congestion 
signals which in turn can be used to change the congestion 
window more effectively. 

In recent years, the Internet has seen great growth in data 
transmission speed. However in high-speed networks, TCP 
congestion control is limiting the throughput [10]. There are 
several protocols proposed to deal with this problem, such as 
FAST TCP [8], High-Speed TCP [5], Scalable TCP [9], and BIC-
TCP [12]. FAST TCP uses RTTs to detect congestion; however, 
all of the other high-speed protocols implement loss-based 
congestion detection.  

In this paper, we present a modification to Sync-TCP which 
provides better throughput and performance than TCP Reno in 
high-speed environments. We carry out simulations in ns-2 [1] 
and compare our results with Reno and original Sync-TCP. 

 

2. BACKGROUND AND RELATED WORK 
Sync-TCP [11,13] is an end-to-end congestion control mechanism 
that makes use of one-way transit times (OTTs) in detecting 
network congestion. It is based on the idea of implementing the 
time-stamp option of TCP on the end systems. The forward path 
queuing delays can be determined by subtracting the minimum 
observed OTT from the current OTT. OTTs can determine the 
forward path queuing delays better than RTTs, because with RTTs 

there is no way to effectively distinguish if the congestion 
occurred in the forward path or the reverse path. Sync-TCP also 
compares the weighted average to a threshold based on an 
estimate of the maximum amount of queuing delay in the network 
to report the trend and where the average computed queuing delay 
lies. Sync-TCP traces the average computed queuing delay into 
one of four regions: 0-25%, 25-50%, 50-75%, and 75-100% of the 
maximum-observed queuing delay.  

In order to perform the trend analysis, Sync-TCP gathers nine 
samples of average computed queuing delays, and splits them into 
three groups of three samples. Then median, mi (i = 0, 1, 2), of 
each of these groups is computed. The trend is determined to be 
increasing if m0 < m2. The trend is determined to be decreasing if 
m0 > m2. Sync-TCP keeps computing a new trend every three new 
ACKs. Each time an ACK is received, Sync-TCP either reports 
one of eight congestion indications or that not enough samples 
have been gathered to compute the trend. 

Figure 1 Sync-TCP Congestion Reactions [11] 

Sync-TCP uses the AIMD congestion window adjustment 
algorithm with some changes in the addition (α) and 
multiplication (β) parameters. Sync-TCP reacts corresponding to 
the trend and the region of computed average queuing delay. 
Figure 1 shows the actions taken by Sync-TCP in response to each 
of the eight possible congestion indications. 

 
3. APPROACH AND UNIQUENESS 
To reduce the probability of packet loss and retain a good sending 
rate, we made a change to the Sync-TCP implementation.  

The reason that Sync-TCP performs worse than Reno in the slow-
start phase is because the maximum increment of the congestion 
window size is 50% of window size per RTT for Sync-TCP, 
whereas Reno doubles its congestion window size per RTT. To 
allow Sync-TCP grow its congestion window faster in slow-start 
phase, we let the Sync-TCP behave like Reno-TCP in slow start 
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until the size of congestion window reaches a pre-determined 
value Clow. Then the size of the congestion window is increased 
by a fixed rate of α0, until the congestion window size reaches 
another value Chigh. Once the congestion window size exceeds 
Chigh, Sync-TCP resumes its original behavior, changing its 
congestion window size. 

The constant increasing rate of congestion window size between 
Clow and Chigh provides smooth switching from Reno behavior to 
Sync-TCP behavior. Without this phase, the increment of 
congestion window size in Reno phase will lead to abrupt changes 
in the queuing delays, which are used by Sync-TCP algorithm to 
detect congestion. By applying this modification on Sync-TCP, 
the performance of Reno on low-end and the performance of 
Sync-TCP on high-end are combined to form a congestion control 
that leads to better performance for the entire time period. 

In our algorithm, we set Clow=100, Chigh=150, and α0=0.375 for 
the modified version of Sync-TCP. These parameters are chosen 
to balance the performance of Reno and Sync-TCP. To get better 
result, Clow should be set as high as possible as long as there is no 
packet loss in the Reno phase, and the Chigh should be set such that 
the interval between Clow and Chigh is large enough to separate the 
Reno phase and the Sync-TCP phase. The value of α0 should be 
picked to accommodate the average increasing rate of congestion 
window size of Sync-TCP.  

 
4. RESULTS AND CONTRIBUTIONS 
We ran simulations with two-way TCP traffic using the ns 
network simulator [1] for 25 seconds. We had a single source 
node and destination node and two finite-buffer droptail 
intermediate routers. Table 1 enlists the experimental cases. 

Table 1 Experimental Cases 

 Bandwidth Propagation 
delay for 
each link 

Maximum 
Congestion 

Window  

Low speed 10 Mbps 10 ms 50 

High speed 100 Mbps 10 ms 500 

 
For the low speed networks, the congestion window for TCP 
Reno took 0.4 seconds to reach the window size of 50. But Sync-
TCP takes 0.85 seconds to attain the same window size. It is due 
to the fact that the rate of increase of the congestion window size 
of Sync-TCP is less when compared to that of TCP Reno. After 
making the above modification, Sync-TCP behaves exactly like 
TCP Reno, thereby giving an improved congestion window size. 

For the scenario of high speed environment (shown in Figure 2), 
Sync-TCP reached its maximum window size in 8 seconds, when 
TCP Reno could not reach this size until 25 seconds. But the 
performance of original Sync-TCP is somewhat deteriorated due 
to the packet losses. If these losses could be reduced, then the 
throughput of Sync-TCP can be further improved.  Modified 
Sync-TCP avoids the early packet loss and is able to achieve its 
maximum window size in only 4 seconds. This clearly shows that 
allowing Sync-TCP to behave like Reno during the slow start 
phase up to some threshold value leads to a great improvement in 
the throughput on high speed environments.  

 
Figure 2 TCP Reno vs. Sync-TCP vs. Modified Sync-TCP 
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