
1

Realistic TCP Traffic Generation in ns-2 and
GTNetS

Prashanth Adurthi and Michele C. Weigle
padurth@cs.clemson.edu, mcweigle@acm.org

Department of Computer Science
Clemson University
Clemson, SC 29634

Abstract— Network simulations have become a large part
of how researchers evaluate their new proposals for Internet
protocols. One of the problems is the lack of good models for how
the Internet behaves. This problem is magnified by the fact that
the Internet is always changing, with new applications producing
unexpected traffic patterns. Recently, a new method for quickly
modeling Internet traffic has been developed. The a-b-t model,
developed at the University of North Carolina, can characterize
all of the TCP connections on a particular link without having to
know precisely the applications that appear on the link. The tmix
workload generation tool, which can replay connections described
by the a-b-t model, was initially developed for use in network
testbeds. We have implemented this tool in the ns-2 and GTNetS
simulators. In this paper, we describe the implementation of tmix
in ns-2 and GTNetS, compare the two implementations, and show
that both implementations can produce traffic that is statistically
similar to the original traced traffic.

I. INTRODUCTION

Network simulations have become a large part of how
researchers evaluate their new proposals for Internet protocols.
One of the often-stated problems is the lack of good models
for how the Internet behaves [8], [9]. The Internet is always
changing, and new applications are developed that produce
unexpected traffic patterns and side-effects. Many of the traffic
models that researchers have used in the past, and in fact
are still using, were developed in a time before some of
the newer high-impact applications were in widespread use
(e.g., peer-to-peer file sharing). One of the reasons for this
lag is the tremendous effort and amount of time required
to develop statistical models of the traffic generated by a
particular application. Unfortunately, it often seems that as
soon as there is an agreed-upon model for an application traffic
type, some new application or new method for using the well-
known application (e.g., the use of HTTP for peer-to-peer file-
sharing) becomes widely-used.

Recently, a new method for quickly modeling Internet
traffic has been developed. The a-b-t model [10], [11] can
characterize all of the TCP connections on a particular link
without having to know precisely the applications that appear
on the link. This method models application data units (ADUs)
rather than individual packets in order to produce a network-
independent, source-level characterization of traffic. The main
insight in the a-b-t model is that most TCP-based applications
operate in a request-response manner. These requests and
responses are the ADUs. The size of the ADU, or request, sent

by the connection initiator is represented by a. The size of the
ADU, or response, sent by the connection acceptor is repre-
sented by b. The time between an initiator receiving a response
and sending the next request, or think time, is represented by
ta, and the time between an acceptor receiving a request and
sending the response, or server delay, is represented by tb.
Each set of values (ai, bi, tai , tbi) is called an epoch, Ei. An
entire connection can be represented by a connection vector,
Ci, which consists of a set of epochs (E1, E2, ..., En) from the
same TCP connection. To allow for applications that do not
strictly follow the request-response method, any of the a or b
sizes can be 0.

Most connections can be described in the manner outlined
above and are called sequential connections. Another form
of connection, called a concurrent connection, allows for
deviation from the sequential pattern. Examples of this type
of application protocol include HTTP/1.1 (pipelining) and the
BitTorrent file-sharing protocol. For a concurrent connection,
the t values represent the time between an initiator sending
consecutive a-type ADUs or an acceptor sending consecutive
b-type ADUs. There is no time dependence in the connection
vector between the a-type and b-type ADUs.

The tmix workload generation tool [10], [17], which can
replay a-b-t model connection vectors, was initially developed
for use in network testbeds. We have implemented this tool in
the ns-2 [3] and GTNetS [14] simulators. A validation of the
ns-2 implementation was presented in previous work [17]. In
this paper, we describe the implementation of tmix in ns-2 and
GTNetS, compare the two implementations, and show that both
implementations can produce traffic that is statistically similar
to the original traced traffic.

Our goal is to provide users of both ns-2 and GTNetS
with a tool that allows them to perform high-quality network
simulations that include realistic Internet traffic. All a user
needs to replay traffic from a certain link is the file of
connection vectors obtained from a trace of that link and the
tmix tool. We plan to host a repository for a set of connection
vectors representing different types of Internet links for users
to download. A release of the tool to generate a connection
vector file from a tcpdump trace will be coming in the near
future.

This remainder of this paper is organized as follows. Section
II discusses related work including existing traffic generators
for ns-2 and GTNetS. Section III describes the tmix connection

2

vector file format, as well as changes we have made to the
format. Section IV discusses the actual implementation of tmix
in both ns-2 and GTNetS. Section V discusses our validation of
the implementation of tmix, and we conclude with a summary
and future directions in Section VI.

II. RELATED WORK

There are several existing traffic generators either built-in
to or externally contributed to ns-2. One of the first to be
included in ns-2 was the WebTraf module, based on the work
of Feldmann et al. [7]. This work models application-specific
characteristics of HTTP traffic such as request size, response
size, user think time, objects per page, inter-object time, etc.
Each characteristic is driven by a random variable distribution,
the parameters of which were derived from analyzing packet
traces.

The RAMP tool [12], also included in ns-2, can take a
tcpdump trace and generate cumulative distribution functions
(CDFs) that describe FTP transfers and web traffic. These
empirical CDFs can then be used to generate traffic.

A newer traffic generator recently added to ns-2 is the
PackMime-HTTP module. This generator is based on a web
traffic model developed at Bell Labs [5] which includes
persistent HTTP connections. This connection-based model
was developed from and validated against a large packet trace
collected in 2000.

One externally contributed module is nsweb [15]. This is
an extension of the well-known SURGE web traffic model [2]
and includes both pipelining and persistent connections.

The GTNetS simulator has built-in web server and web
browser applications based on the Mah web traffic model [13],
but to our knowledge, there have been no other TCP traffic
generators contributed to GTNetS.

Although there are existing web traffic generators for net-
work simulators, there is no tool for generating realistic,
application-independent mixes of all TCP traffic on a link,
including email, FTP transfers, web browsing, and peer-to-
peer file sharing.

III. Tmix CONNECTION VECTOR FORMAT

The a-b-t model describes each connection in a trace as
a connection vector. A connection vector consists of the set
of ADUs sent by both the initiator and acceptor sides of the
connection and the time delays between each side receiving
the data from the other side and sending its own data. In
addition to these values, the connection vector also specifies
other characteristics of the connection, including connection
start time, the window sizes of the initiator and the acceptor,
the minimum RTT that the packets experienced, and the loss
rate of that connection. A file of connection vectors is read in
by the tmix tool and used to generate the corresponding traffic.

A. Original Connection Vector Format

Examples of the original format of connection vectors as
described in [17] are shown in Figures 1 and 2. Figure 1
shows a sequential connection vector, while Figure 2 shows
a concurrent connection vector. Sequential and concurrent

SEQ 6851 1 21217 555382 # starts at 6.851 ms
w 64800 6432 # win sz (bytes): init acc
r 1176194 # min RTT (us)
l 0.000000 0.000000 # loss: init->acc acc->init
> 245 # init sends 245 bytes
t 51257 # acc waits 51 ms after recv
< 510 # acc sends 510 bytes
t 6304943 # init waits 6.3 sec after

send and then sends FIN

Fig. 1. Sequential Connection Vector Example. In the comments, we
abbreviate the initiator as init and the acceptor as acc.

CONC 1429381 2 2 26876 793318 # starts at 1.4 s
w 65535 5840 # win sz (bytes)
r 36556 # min RTT
l 0.000000 0.000000 # loss rate
c> 222 # init sends 222 bytes
t> 62436302 # init waits 62 sec
c< 726 # acc sends 726 bytes
t< 62400173 # acc waits 62 sec
c> 16 # init sends 16 bytes
t> 725 # init waits 725 us

and then sends FIN
c< 84 # acc sends 84 bytes
t< 130 # acc waits 130 us

and then sends FIN

Fig. 2. Concurrent Connection Vector Example. In the comments, we
abbreviate the initiator as init and the acceptor as acc.

connection vectors are differentiated by the starting string in
the first line: SEQ for a sequential connection and CONC for
a concurrent connection. The second line in each, starting
with w gives the window sizes of the initiator and acceptor,
respectively, in bytes. The third line starting with r gives
the minimum RTT in microseconds between the initiator and
acceptor. The fourth line, starting with l, shows the loss rates
involved in each direction of the connection. The remaining
lines in the connection vector show the ADU exchanges.

In the sequential connection vectors, the ADUs are shown
in increasing order by the times at which they are sent. The
lines starting with > show the sizes of the a-type ADUs sent
by the initiator to the acceptor, and the lines starting with <
show the sizes of the b-type ADUs sent by the acceptor to
the initiator. Note that there is a time dependency in case of
sequential connection vectors. One side of the connection is
dependent on the other side of the connection sending it an
ADU.

In case of sequential connections, the line containing t can
appear in any of the following four scenarios:

1) After a line beginning with > and before a line begin-
ning with <.

2) After a line beginning with < and before a line begin-
ning with >.

3) At the end of the connection vector, after a line begin-
ning with >.

4) At the end of the connection vector, after a line begin-

3

ning with <.

Depending on its placement, the semantics associated with the
t value change. In case 1, t denotes the amount of time the
acceptor has to wait after receiving an ADU from initiator
before it can send its next ADU. In case 2, the t denotes the
amount of time the initiator has to wait after receiving an ADU
from acceptor before it can send its next ADU. In case 3, the
t denotes the time the initiator has to wait after sending its
last ADU and before closing the connection. In case 4, the t
denotes the time that the acceptor has to wait after sending its
last ADU and before closing the connection.

For concurrent connection vectors, lines starting with c>
indicate the bytes sent by the initiator (a-type ADUs), and
lines starting with c< indicate the bytes sent by the acceptor
(b-type ADUs). Lines starting with t> indicate the time the
initiator waits before sending the next ADU (or sending the
FIN, if the last ADU has been sent). Likewise with lines
beginning with t< and the acceptor. Note that there is no
time dependence between the initiator and acceptor in case of
a concurrent connection vector. The waiting times are between
consecutive sends and are not dependent upon receiving an
ADU from the other side.

B. Alternate Connection Vector Format

The multiple possible interpretations of the t value with
sequential connections requires us to keep a record of what has
been read before the t value is read. This makes parsing the
connection vector file tedious. Also, because of the difference
between the sequential and concurrent connection semantics,
they have to be dealt separately while programming the
module. To avoid this and to make programming the module
easier, we have modified the connection vector format into an
alternate format.

The basic idea behind converting the original connection
vector format is that in the case of sequential connection vec-
tors, there really exist two times associated with the initiator
or acceptor while sending an ADU to the other side:

1) The amount of time the initiator/acceptor has to wait
before sending the next ADU after sending its previous
ADU (send wait time).

2) The amount of time the initiator/acceptor has to wait
before sending the next ADU after receiving an ADU
from the other side (recv wait time).

Note that only one of the above two values is used by an
initiator/acceptor while sending its ADU to the other side,
i.e., the initiator/acceptor schedules sending its next ADU with
respect to the event of receiving a ADU from the other side
or with respect to the event of sending a previous ADU. The
initiator/acceptor does not use both of these values at the same
time, so in the new format one of these values is always set
to 0. Also note that at the beginning of the connection, the
side sending the first ADU will have both send wait time and
recv wait time set to 0. In case of the t values appearing at the
end of a connection vector in the original format, we introduce
a dummy ADU with size 0 to represent the FIN that will be
sent by the initiator/acceptor that sends the last ADU.

S 6851 1 21217 555382 # starts at 6.851 ms
w 64800 6432 # win sz (bytes)
r 1176194 # min RTT
l 0.000000 0.000000 # loss rate
I 0 0 245 # init sends 245 bytes
A 0 51257 510 # acc waits 51.257 ms after

recv then sends 510 bytes
A 6304943 0 0 # acc waits 6.3 sec after

send then sends FIN

Fig. 3. Alternate Sequential Connection Vector Example. In the comments,
we abbreviate the initiator as init and the acceptor as acc.

C 1429381 2 2 26876 793318 # starts at 1.4 s
w 65535 5840 # win sz (bytes)
r 36556 # min RTT
l 0.000000 0.000000 # loss rate
I 0 0 222 # init sends 222 bytes
A 0 0 726 # acc sends 726 bytes
I 62436302 0 16 # init waits 62 sec and

then sends 16 bytes
A 62400173 0 84 # acc waits 62 sec and

then sends 84 bytes
I 725 0 0 # init waits 725 us

and then sends FIN
A 130 0 0 # acc waits 130 us

and then sends FIN

Fig. 4. Alternate Concurrent Connection Vector Example. In the comments,
we abbreviate the initiator as init and the acceptor as acc.

This same alternate representation can be used for concur-
rent connection vectors also. But because there is no time
dependence between the sides of the connection, each side
schedules sending its next ADU with respect to time at
which it sent its last ADU. Therefore, in case of concurrent
connection vectors, recv wait time is not applicable and is
always set to 0. Also, in case of concurrent connection vectors,
both the sides start sending their messages at the same time.

We keep the header lines of the connection vectors (those
containing the start time, window size, RTT, and loss rates)
in the same format as the original, except that we replace
SEQ with S and CONC with C. Lines beginning with I denote
actions for the initiator, and lines beginning with A show
actions for the acceptor. The remaining format of these lines
is send wait time recv wait time bytes. Figures 3 and 4
show the alternate connection vector format corresponding to
the sequential and concurrent connections shown in Figures 1
and 2, respectively.

With this new connection vector format, sequential and
concurrent connections can be handled uniformly. Parsing the
file is made easier as the problem with the t value in the
original format is eliminated. Instead of changing the original
tool that creates connection vectors from tcpdump traces,
we wrote a simple Perl script to convert the original tmix
connection vector format to this new format.

4

IV. IMPLEMENTATION OF tmix

The implementation of tmix in both ns-2 and GTNetS is
divided into two parts: tmix-end and tmix-net. The module
tmix-end implements the work of the end systems in sending
ADUs into the network, and the tmix-net module implements
the network part of the traffic generation (i.e., delays and
losses).

In ns-2, tmix-end is based on the implementation of
PackMime-HTTP [4], [5], and tmix-net is based on the imple-
mentation of DelayBox [5], [16]. Both PackMime-HTTP and
DelayBox are now included as a standard part of ns-2, and
further documentation is available in the ns-2 Manual [6].

We will first describe the general implementations of tmix-
end and tmix-net (which are also described in our previous
work [17]), and then follow with differences between ns-2
and GTNetS and how they affect the tmix implementations.
Additional details of both implementations are available in
[1].

A. tmix-end

The tmix-end module controls all of the activities of a set of
initiators and acceptors. There are two nodes associated with
each tmix-end instance – one representing a set of initiators
and another representing a set of acceptors. These nodes are
typically on different sides of the network from each other.

tmix-end reads the description of connections from a speci-
fied connection vector file, the format of which was described
earlier. For each connection described in the file, tmix-end
maintains a list of ADUs and their associated times (i.e., the
send wait time and the recv wait time) for the initiator and a
separate list for the acceptor. These two lists are associated
with a single connection. This connection is also described
by the start time of the connection, a unique ID present in
the connection vector file, and the maximum TCP window
sizes for the initiator and acceptor. Once the initiator and
acceptor have a TCP connection established, transfer of ADUs
proceeds according to the connection vector. Once all the
connections described in the file have completed, tmix-end
ends the simulation.

New connections are started according to the connection
start time. The tmix-end module sets the appropriate window
sizes for both the initiator and acceptor. The remaining opera-
tion of tmix-end depends upon whether the connection vector
describes a sequential or concurrent connection. In sequential
connections, the initiator sends a-type ADUs (“requests”) that
the acceptor “responds to” with a b-type ADU. No pipelining
of requests is used. In concurrent connections, the initiator
uses pipelining to send multiple a-type ADUs without waiting
for a response from the acceptor.

For sequential connections, the initiator uses the connec-
tion’s a sizes, while the acceptor uses the connections b
sizes. In most cases, both the initiator and acceptor use the
recv wait time. This time represents the think time for the
initiator and the server delay time for the acceptor. The initiator
first sends an a-type ADU. Once the acceptor receives an a-
type ADU, it waits for the time specified in recv wait time and
then sends the next b-type ADU in the list. When the acceptor

receives the b-type ADU, it waits for the recv wait time and
then sends the next a-type ADU. If the size of the next ADU
to send is 0, the node sends a FIN to close the connection.

In the case of concurrent connections, each side (acceptor
or initiator) is scheduled independently. The initiator sends
its a-type ADUs according to the schedule given, waiting for
its send wait time before sending a new a-type ADU. The
acceptor sends its b-type ADUs according to its schedule,
waiting for its send wait time before sending a new b-type
ADU. The acceptor no longer waits to receive an a-type ADU
before sending a response, and the initiator no longer waits to
receive a b-type ADU before sending the next a-type ADU.
The side sending the last ADU will send the FIN to close the
connection.

B. tmix-net

The tmix-net module allows a user to create per-flow delays
and losses. The delay and loss rates for each connection are
contained in the connection vector. A tmix-net node should be
placed in the network between the initiator and acceptor nodes
used by tmix-end.

Upon startup, the tmix-net module reads each connection’s
ID, source, destination, RTT, and loss rate from the connection
vector file into a table. When a packet is received, tmix-
net looks up the connection ID, source, and destination in
the table to find the appropriate delay and loss values. Any
variations in delays between packets in the same flow are due
only to network effects. This allows each TCP connection
in the experiment to have a different minimum RTT. There
is a separate queue for each connection, so the connection’s
packets stay in order while they are being delayed. Packets
from different connections may be forwarded in a different
order than they were received based on their delay values.
Each packet in a flow is delayed the same amount before being
passed on to the next node. As in DelayBox, once packets
are delayed for their specified time, they are passed up to
the single network-level queue for the node. This allows each
packet to experience additional queuing delays and possible
queue overflows, just as in a regular forwarding node. When
a FIN is received for a connection, its entry is deleted from
the table.

Note that the tmix-net module is symmetric, in that both
data and ACKs from the same connection will be delayed the
same amount. Because of this, the delay value in the tmix-net
table is one-half of the RTT given in the connection vector.

C. Differences Between ns-2 and GTNetS

The implementations of tmix in ns-2 and GTNetS are similar,
but mainly differ in the way the simulators handle the layers
of the network protocol stack.

In both ns-2 and GTNetS, tmix-end is implemented as two
Application objects, one for the initiators and one for the
acceptors. In ns-2, an Application must be bound to an
Agent (representing the transport layer), which is then bound
to a Node (representing the physical end system). In GTNetS,
when an Application is created, its entire network stack
is created and automatically bound to it. This Application

5

R0 R1

n0 n1

n2 n3

initiator acceptor

tmix-net tmix-net

initiatoracceptor

inbound

outbound

Fig. 5. Simulation Topology With Four Nodes Associated with Two tmix-
end Modules and Two tmix-net Nodes. Nodes n0 and n1 are associated with
the inbound tmix-end module, and nodes n2 and n3 are associated with the
outbound tmix-end module.

is then bound to a Node. Agents in ns-2 correspond to the
Layer4 protocol objects in GTNetS.

In the ns-2 implementation of tmix, we chose to use Full-
TCP as the Agent because we want to generate network traffic
as realistically as possible. Full-TCP provides TCP connection
startup and teardown, variable packet sizes, and full-duplex
connections. There is an option in tmix-end to choose the
particular type of Full-TCP Agent (Tahoe, Reno, NewReno,
or SACK). In GTNetS, the TCP-based Layer4 objects are
similar to the Full-TCP Agents in ns-2. The TCP variant can
be specified when a new Application is created.

In ns-2, we used a maximum segment size (MSS) of 1460
bytes. In GTNetS, we encountered issues with buffering of
short packets when the MSS was set to 1460 bytes. These
issues were eliminated when using the default MSS of 512
bytes.

D. Examples

In Figure 5 we show the topology used in our validation
experiments and upon which our examples are based. We use
two tmix-end modules so that we can represent two-way traffic,
with initiators and acceptors on both sides of the network.
Recall that a single simulation node acting as an initiator
or an acceptor is actually representing a set of end systems.
The terms inbound and outbound refer to the direction of the
connections being initiated with respect to the area inside the
dotted line in Figure 5.

Figure 6 gives an example of the ns-2 TCL commands
needed to setup tmix. First, a new TmixEnd object is created.
Then, the initiator and acceptor nodes are assigned, and an
ID is assigned to distinguish between each TmixEnd instance.
Finally, the connection vector file is assigned. To setup tmix-
net, we create a new TmixNet object and assign the connection
vector file, initiator node, and acceptor node. By default, tmix-
net will use the loss rate specified in the connection vector

Setup tmix-end
set tmixIn [new TmixEnd]
$tmixIn set-init $n(0); # name $n(0) as initiator
$tmixIn set-acc $n(1); # name $n(1) as acceptor
$tmixIn set-ID 1
$tmixIn set-cvfile "inbound.cvec"

set tmixOut [new TmixEnd]
$tmixOut set-init $n(3); # name $n(3) as initiator
$tmixOut set-acc $n(2); # name $n(2) as acceptor
$tmixOut set-ID 2
$tmixOut set-cvfile "outbound.cvec"

Setup tmix-net
set tmixNetIn [$ns TmixNet]
$tmixNetIn set-flowfile "inbound.cvec" \

[$n(0) id] [$n(1) id]
$tmixNetIn set-lossless

set tmixNetOut [$ns TmixNet]
$tmixNetOut set-flowfile "outbound.cvec" \

[$n(3) id] [$n(2) id]
$tmixNetOut set-lossless

Start tmix
$ns at 0.0 "$tmixIn start"
$ns at 0.0 "$tmixOut start"

Fig. 6. Example ns Commands to Run tmix

file. For a lossless simulation where no losses are enforced by
tmix-net, the set-lossless option should be given.

Figure 7 gives an example of the GTNetS commands needed
to setup tmix. The setup of tmix in both ns-2 and GTNetS is
very similar, except that the ns-2 script is written in TCL and
GTNetS is in C++.

Full examples, as well as the source code for the tmix
implementations in ns-2 and GTNetS, will be available from
our webpage in the near future.

V. VALIDATION

As the validation of tmix in ns-2 was demonstrated in
previous work [17], we use this section to show that the
implementation of tmix in GTNetS is similar to that in ns-2.
The connection vectors used in this validation were collected
from a trace of a 1 Gbps Ethernet link connecting the campus
of the University of North Carolina (UNC) with the router of
its ISP. Outbound connections are those where the initiator
was located at UNC and the acceptor was located somewhere
else, while inbound connections are those where the acceptor
was located at UNC. Because of popular download sites on
campus such as www.ibiblio.org, UNC is a net producer
of traffic, meaning that there is often more inbound traffic
(acceptors at UNC) than outbound traffic.

In our validation, we consider the following metrics:
• Packet Arrivals - time series of the number of packets

arriving on the link per second
• Throughput - number of bits per second transmitted on

the link

6

// Setup tmix-end
TmixEnd* tmixEndIn = new TmixEnd();
tmixEndIn->Set_init(n0);
tmixEndIn->Set_acc(n1);
tmixEndIn->Set_cvfile("inbound.cvec");
tmixEndIn->Set_id(1);

TmixEnd* tmixEndOut = new TmixEnd();
tmixEndOut->Set_init(n3);
tmixEndOut->Set_acc(n2);
tmixEndOut->Set_cvfile("outbound.cvec");
tmixEndOut->Set_id(2);

// Setup tmix-net
TmixNet* tmixNetIn = new TmixNet(r0);
tmixNetIn->Set_flowfile ("inbound.cvec", \

IPAddr("192.168.1.0"), \
IPAddr("192.168.1.1"));

tmixNetIn->Set_lossless();

TmixNet* tmixNetOut = new TmixNet(r1);
tmixNetOut->Set_flowfile ("outbound.cvec", \

IPAddr("192.168.1.3"), \
IPAddr("192.168.1.2"));

tmixNetOut->Set_lossless();

// Start tmix
tmixEndIn->Start(0.0);
tmixEndOut->Start(0.0);

Fig. 7. Example GTNetS Commands to Run tmix

• Active Connections - time series of the number of active
connections per second

For each of these metrics, we show the statistics calculated
from the original trace data, from the ns-2 tmix traces, and
from the GTNetS tmix traces.

As mentioned earlier, our simulation topology is shown in
Figure 5. We use two tmix-end modules to simulate initiators
and acceptors on both sides of the network. Each link has a
link speed of 1 Gbps and a delay of 100 µs. These parameters
were set to minimize their effect on the simulation. The RTTs
will be specified in the connection vectors.

A. Packet Arrivals

Figure 8 shows the number of packet arrivals per second
in the inbound direction, and Figure 9 shows the number of
packet arrivals per second in the outbound direction. The ns-2
line is slightly below the original trace in both figures because
of two main issues. First, we found that with Full-TCP, even
when the Nagle algorithm was turned off, small packets were
still buffered together before being sent. For example, if an
initiator was schedule to send a 600-byte ADU at time 1.53
seconds, followed 20 ms later by a 1400-byte ADU, only one
1460-byte packet would be sent at time 1.55 seconds. This,
then, reduces the number of packets seen on the link. The
second issue we found was with delayed ACKs. If delayed
ACKs were not used, there were a larger number of packets
for ns-2 than with the original trace (i.e., these were extra
ACKs). Depending on the exact delay timer used (100 ms

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 0 50 100 150 200 250 300

P
ac

ke
t A

rr
iv

al
s

(p
er

 s
ec

on
d)

Time (s)

Original Trace
ns-2
GTNetS

Fig. 8. Packet Arrivals Inbound

 0

 5000

 10000

 15000

 20000

 25000

 0 50 100 150 200 250 300

P
ac

ke
t A

rr
iv

al
s

(p
er

 s
ec

on
d)

Time (s)

Original Trace
ns-2
GTNetS

Fig. 9. Packet Arrivals Outbound

in these experiments), there were different numbers of packet
arrivals. Our conjecture is that the delayed ACK mechanism
in Full-TCP in ns-2 does not exactly mimic a real TCP stack’s
delayed ACK mechanism. In addition, there may have been
some number of flows in the original trace that did not use
delayed ACKs at all.

The GTNetS line is much higher than both the original and
ns-2 line. This is because we had to use a MSS of 512 bytes
in GTNetS, which increased the number of packets used to
send larger ADUs. We plan to look into the issues caused in
GTNetS when the MSS was increased to 1460 bytes.

B. Throughput

Figure 10 shows the throughput observed in the inbound
direction, and Figure 11 shows the throughput in the outbound
direction. Both ns-2 and GTNetS follow the original trace
throughput quite well. Both simulation lines are close to the
original trace. Differences between the ns-2 and the GTNetS
lines may have to do with the different MSS used and the
slightly different ways that tmix-net was implemented. We will
continue to investigate these differences.

7

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 50 100 150 200 250 300

T
hr

ou
gh

pu
t (

M
bp

s)

Time (s)

Original Trace
ns-2

GTNetS

Fig. 10. Throughput Inbound

 0

 10

 20

 30

 40

 50

 60

 0 50 100 150 200 250 300

T
hr

ou
gh

pu
t (

M
bp

s)

Time (s)

Original Trace
ns-2

GTNetS

Fig. 11. Throughput Outbound

C. Active Connections

Figure 12 shows the number of active connections per sec-
ond. The number of active connections provides an indication
of the congestion in the network. Both the ns-2 and GTNetS
simulations in this figure were run in the lossy mode (where
the loss rates in the connection vector were simulated), and
both have similar numbers of active connections as the original
trace. If instead the simulations had been run in lossless mode,
there would be fewer active connections than in the original
trace because more connections would have completed in a
shorter amount of time (due to the absence of loss).

D. Running Time

One thing that surprised us was the difference in running
times. We expected that the GTNetS simulation would run
faster since it is implemented solely in C++ rather than a mix
of C++ and OTcl, but we found that the ns-2 implementation
was faster. On a 3.4 GHz Intel Pentium 4 machine with 2
GB of memory, the 300-second ns-2 simulation completed in
about 18 minutes, while the GTNetS simulation took just over
an hour to complete.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 0 50 100 150 200 250 300

A
ct

iv
e

C
on

ne
ct

io
ns

Time (s)

Original Trace
ns-2
GTNetS

Fig. 12. Active Connections

VI. CONCLUSIONS

Network simulations are a useful tool for researchers study-
ing Internet protocols and mechanisms. A major problem with
simulations is the lack of realistic models of Internet traffic.
The a-b-t model and accompanying tmix traffic generator can
provide for a rapid transition from tracing network links to
replaying, in a network-independent manner, the source-level
characteristics of the measured traffic. We have implemented
the tmix generator in the ns-2 and GTNetS network simulators
and have shown that both simulators can produce traffic that
is statistically similar to that observed on a real Internet link.

Future work in regards to the a-b-t model, as described in
[17], includes characterizing UDP traffic, to provide a richer
model of Internet links. We will continue to work on the
implementations of tmix in ns-2 and GTNetS to address some
of the issues discussed earlier and to reduce the running time
and memory requirements. In addition, we plan to host a
repository of connection vector files traced from various links
that researchers can download and use in their simulations.
We hope that this work will provide network researchers with
a method for conducting more realistic experiments than were
possible before.

ACKNOWLEDGMENTS

We thank George Riley of Georgia Tech for many helpful
conversations about GTNetS and for contributing code to the
tmix-net portion of the GTNetS implementation. We also thank
Shobana Natesan Sampath and Venkata Vasireddi of Clemson
University for help in coding tmix in ns-2. Finally, we thank
Felix Hernandez-Campos of the University of North Carolina
for collecting the traces and producing the tmix connection
vectors for the links we used in the validation study.

REFERENCES

[1] P. Adurthi. Generating tmix-based TCP application workloads in ns-2
and GTNetS. Master’s thesis, Clemson University, 2006.

[2] P. Barford and M. E. Crovella. Generating representative web workloads
for network and server performance evaluation. In Proceedings of ACM
SIGMETRICS, pages 151–160, 1998.

8

[3] L. Breslau, D. Estrin, K. Fall, S. Floyd, J. Heidemann, A. Helmy,
P. Huang, S. McCanne, K. Varadhan, Y. Xu, and H. Yu. Advances
in network simulation. IEEE Computer, 33(5):59–67, May 2000.

[4] J. Cao, W. S. Cleveland, Y. Gao, K. Jeffay, F. D. Smith, and M. C.
Weigle. PackMime-HTTP: Synthetic web traffic generation in ns-2,
2004. Software available at http://dirt.cs.unc.edu/packmime/.

[5] J. Cao, W. S. Cleveland, Y. Gao, K. Jeffay, F. D. Smith, and M. C.
Weigle. Stochastic models for generating synthetic HTTP source traffic.
In Proceedings of IEEE INFOCOM, Mar. 2004.

[6] K. Fall and K. Varadhan, editors. ns Manual. http://www.isi.edu/
nsnam/ns/doc/ns doc.pdf, 2006.

[7] A. Feldmann, A. C. Gilbert, P. Huang, and W. Willinger. Dynamics of
IP traffic: A study of the role of variability and the impact of control.
In Proceedings of ACM SIGCOMM, Sept. 1999.

[8] S. Floyd and E. Kohler. Internet research needs better models. In
Proceedings of the Workshop on Hot Topics in Networks (HOTNETS),
Princeton, New Jersey, Oct. 2002.

[9] S. Floyd and V. Paxson. Difficulties in simulating the Internet.
IEEE/ACM Transactions on Networking, 9(4):392–403, Aug. 2001.

[10] F. Hernández-Campos. Generation and Validation of Empiricially-
Derived TCP Application Workloads. PhD thesis, University of North
Carolina at Chapel Hill, Department of Computer Science, 2006.

[11] F. Hernández-Campos, F. D. Smith, and K. Jeffay. Generating realistic
TCP workloads. In Proceedings of the Computer Measurement Group
International Conference (CMG), Las Vegas, NV, Dec. 2004.

[12] K.-C. Lan and J. Heidemann. Rapid model parameterization from
traffic measurements. ACM Transactions on Modeling and Computer
Simulation, 12(3):201–229, July 2002.

[13] B. A. Mah. An empirical model of HTTP network traffic. In Proceedings
of IEEE INFOCOM, pages 592–600, 1997.

[14] G. F. Riley. The Georgia Tech network simulator. In Proceedings
of the ACM SIGCOMM Workshop on Models, Methods and Tools for
Reproducible Network Research (MoMeTools), Aug. 2003.

[15] J. Wallerich. NSWEB - A HTTP/1.1 extension to the ns-2 network sim-
ulator. http://www.net.informatik.tu-muenchen.de/∼jw/nsweb,
2004.

[16] M. C. Weigle. DelayBox: Per-flow loss and delay in ns-2, 2004.
Software available at http://dirt.cs.unc.edu/delaybox/.

[17] M. C. Weigle, P. Adurthi, F. Hernández-Campos, K. Jeffay, and F. D.
Smith. Tmix: A tool for generating realistic TCP application workloads
in ns-2. ACM SIGCOMM Computer Communication Review, 2006. to
appear.

