

OLD DOMINION UNIVERSITY
DEPARTMENT OF COMPUTER SCIENCE

MASTER’S PROJECT REPORT

How I Changed Over Time:

A webservice to summarize TimeMaps
based on SimHashed HTML content

Author: Advisor:

 ​Maheedhar Gunnam Dr. Michele C. Weigle
Dr. Michael L. Nelson

A report submitted in fulfillment of the requirements
for the degree of Master

In

Computer Scienc​e
2018

http://cs.odu.edu/

Acknowledgement
I would like to express my sincere gratitude to my project advisor Dr. Michele C. Weigle,

Associate Professor, Department of Computer Science at Old Dominion University, for

being a remarkable source of inspiration to me and for guiding me throughout the project.

My love for visualization started during course Information Visualization in Spring 2017

under Dr. Weigle. Visual representations are always powerful and more effective when

compared to other methods of representing data. I would like to thank Dr. Michael L.

Nelson for co-advising efforts on this project. He has been very understanding and

supportive at every step and hence, I could keep track of my progress and finish the

project as intended.

I want to thank NEH ODH for the grant and their support, which made this project

possible.

I take this opportunity to thank Sawood Alam, PhD Candidate, Web Science and Digital

Libraries (WSDL) lab, Computer Science Department, Old Dominion University, for

always being there to help me understand some aspects and spending time in making

design decisions.

I would like to thank Miranda Smith for being very helpful throughout the semester

working with me on this system, I want to thanks all other members from WSDL Research

Group who provided me with related resources and important comments during my work

with the Group. My special thanks to Surbhi Shankar Masters Graduate, Mat Kelly PhD

Candidate and Dr. Ahmed Alsum who has done initial work of this project. Finally, my

sincere thanks to the Department of Computer Science for providing me all the required

resources and infrastructure to complete this project successfully.

1

Abstract
With the increase in the dynamic nature of the web, often the content of a web page

grows, changes, and might be shrunk. And with these pages being archived numerous

times, they serve as the digital history for those changes that are long gone from the live

page. But visualizing over these numerous different archived copies, or mementos, with

the intention of perceiving the major changes over time is nearly impossible, as the

memento count can be very high. In case of cnn.com, the web page has been archived

188,966​ ​times​. This TimeMap summarization tool referenced throughout this paper as

‘tmvis’, facilitates visualization of these changes by analyzing all mementos in a TimeMap

and picking the most unique mementos, which best describe the major changes in a

webpage. A web service with a user friendly interface and command line tools are also

provided for this tool.

2

Contents
1. Introduction 4

2. Design & Implementation 8
2.1 SimHash 9
2.2 System Architecture 13

2.2.1 TimeMap Fetching 13
2.2.2 SimHash Generation on each memento 16
2.2.3 Unique mementos filtering based on Hamming distance 18
2.2.4 Thumbnail Creation 20

3. Visualizations & System Walkthrough 23
3.1 Visualizations 23
3.2 System Walkthrough 25

4. Technology Stack & Deployment Details 29
4.1 Technology Stack 29
4.2 Service Usage 29

5. Future Enhancements 32
5.1 Downloadable Animated GIF 32
5.2 Embeddable plug and play service 32
5.3 User control over representative thumbnails selection 33

6. Conclusion 33

References 34

Appendix A 35

Appendix B 41

3

1. Introduction
The novel idea behind this project is to address the problem of how to empower the

human eye to see the ever changing content of an archived webpage easily.

The web today is dynamic; the content of a webpage today may not be visible tomorrow,

basically overwritten by new content. This is because of excessive competition in the

field, a website is viewed more when most recent updates are published. It may be in the

field of general news, sports, politics, fashion or trends. We have to be thankful for

organizations like the Internet Archive , Archive-It , Archive.is , etc. These organizations 1 2 3

strive to save as much data on the webpages as possible to help researchers. These

archived resources can then be used to retrieve the past content and perceive how a

webpage looked like during any preserved time in the past. These organizations act like

our Digital Libraries and save our history in a digitized form. This preserved past web

becomes helpful for researchers in the field of humanities and social science.

A memento [5] is an archived version of a webpage, preserved at a particular time, or

datetime. The TimeMap of a webpage is the list of all the mementos of a particular

webpage. A thumbnail is a small image representation of a rendered archived page taken

as a snapshot. The three visualization techniques [6] in this project, Grid, Timeline and

Slider views, are based on the thumbnail representation of mementos.

Figures 1 and 2 shows examples of how a user can view a TimeMap, the list of

mementos of a particular URI.

1 ​http://web.archive.org/
2 ​http://archive-it.org/
3 http://archive.is/

4

http://web.archive.org/
http://archive-it.org/

Fig. 1: Calendar-style interface from Wayback Machine requested on ​odu.edu

​Fig. 2: TimeMap requested from Archive-It on ​odu.edu

5

https://web.archive.org/web/*/http://www.odu.edu
https://wayback.archive-it.org/all/*/http://odu.edu/

Fig. 3: Calendar-style interface from Wayback Machine requested on​ apple.com

Only the ​Internet Archive​ and ​Archive-It​ are presented above although there exist many

other archiving organizations. Fig. 1 depicts the mementos on the calendar for the URI

odu.edu​ from the Internet Archive. Fig. 2 depicts the mementos available in collection “all”

for the URI ​odu.edu​ from Archive-It. It is important to think about the URIs that are

popular and that can have several thousand archived copies. Fig. 3 shows the calendar

view of the mementos for apple.com. As one can see there are 70,000 mementos. By

clicking on any of the bubbles or links, the user would then be navigated to the version of

the webpage on that particular datetime and can view exactly how the page looked then.

Fig. 4 shows the memento of the page ​odu.edu​ from Internet Archive on January 04,

6

https://web.archive.org/web/*/https://www.apple.com/
https://archive.org/
https://wayback.archive-it.org/
http://www.odu.edu/
https://wayback.archive-it.org/all/*/http://odu.edu/
https://www.odu.edu/

2018, which is obtained by clicking the bubble on Jan 4 in Fig. 1. Fig. 5 shows the live

version of same page, ​odu.edu​.

Fig. 4: Thumbnail of the memento (January 4, 2018) from Internet Archive of ​odu.edu

7

http://www.odu.edu/
https://web.archive.org/web/20180104140433/http://www.odu.edu

Fig. 5: Thumbnail of the live version of the page ​odu.edu

It is easier to gain an overview of the webpage changes if URI has fewer number of

archived versions, like 4 or 5 mementos, because the user can manually render these

mementos. This situation quickly worsens if the number of mementos to deal with is large,

like when the number of mementos is greater than 50. However, to deal with popular

pages like​ www.apple.com​, the task of trying to visualize the summary of what happened

is nearly impossible if done manually. The problem this project addresses is to be able to

summarize the entire TimeMap and give reliable context to a webpage’s evolution. This is

useful for a user who wishes to view how a web page changed over time by filtering the

unique mementos over the whole TimeMap.

2. Design & Implementation
First, the problem that we are addressing is to be able to select the unique mementos

from the TimeMap. The assumption made here is that the underlying HTML content is

largely responsible for the way that a web page looks. Considering two mementos, the

8

http://www.odu.edu/
http://www.apple.com/

measure of how different the mementos look can be determined by examining the

memento HTML content. If the underlying HTML content differs a lot, the two mementos

will look different when rendered. Alsum [1] found that SimHash computed on the HTML 4

content of the memento was effective in measuring the similarities between the

webpages.

This project is built on top of the code written by Mat Kelly [2], and the visualizations are

expanded upon Shankar’s Masters Project [3]. Before we delve more into design and

implementation aspects, the following section focuses on the SimHash technique, which

is a core to this project.

2.1 SimHash

In order to compare the HTML content of two mementos, first the HTML content of the

mementos have to be collected. Then a signature fingerprint on whole HTML content is

produced through SimHash technique and is compared with the signature of the other

memento.

In order to demonstrate why SimHash is a better measure in calculating the webpage

similarities than other hash techniques like MD5, three different mementos from the

TimeMap of ​www.odu.edu​ are requested from the Archive-It, namely memento M1, M2

and M3. The thumbnails are generated and their respective URI-Ms are presented in

Fig.7 - 9.

4 https://en.wikipedia.org/wiki/SimHash

9

http://www.odu.edu/

Fig. 7: Thumbnail of memento M1
(​http://wayback.archive-it.org/all/20100115160223if_/http://www.odu.edu/​)

Fig. 8: Thumbnail of memento M2
(​http://wayback.archive-it.org/all/20110105165700if_/http://www.odu.edu/​)

10

http://wayback.archive-it.org/all/20100115160223if_/http://www.odu.edu/
http://wayback.archive-it.org/all/20110105165700if_/http://www.odu.edu/

Fig. 9: Thumbnail of memento M3
(​http://wayback.archive-it.org/all/20080326001151if_/http://www.odu.edu/​)

By looking at these thumbnails, one can say that the thumbnails for memento M1 and M2

look alike, whereas M3 is far distinct from the other two. At a closer look, one will realize

that M1 and M2 differ with the content they hold, though the layout is the same. Now an

attempt is made to compute the hashes on the HTML content of these selected

mementos. At first MD5 hashing is used to compute the hashes and is as shown below:

$curl URI- ​M1 ​ | ​md5sum ​ -> ​fc8e53aebb9061f390aba82665581295

$curl URI- ​M2 ​ | ​md5sum -> d546e192eab633f4d1b4451399c8adcc

$curl URI- ​M3 ​ | ​md5sum -> 5e98bc5367c86f3ffaea0b8c3deb3f5d

After the hashes are generated, the Hamming distance is calculated between the pairs

(M1, M2) and (M2, M3). The Hamming distance is the minimum number of substitutions

required to convert one string to another. The results are as shown below:

$ node ​hammingdistance M1 M2​ -> ​30

$ node ​hammingdistance M2 M3​ -> ​32

11

http://wayback.archive-it.org/all/20080326001151if_/http://www.odu.edu/

Now the same process is repeated with SimHash being the hashing technique used and

the results are as shown below:

$curl URI- ​M1 ​ | ​SimHash ​ ​-> 8c27981eaed151cfa645ad823932eac6

$curl URI- ​M2 ​ | ​SimHash ​ ​ -> 8c27981 ​fa ​a ​d ​951cf ​8 ​645ad823 ​d ​32eac ​2

$curl URI- ​M3 ​ | ​SimHash ​ ​ -> fa3799170258494b9443b9be3977a84e

$ node ​hammingdistance M1 M2 ​-> ​6

$ node ​hammingdistance M2 M3 ​-> ​27

On a closer look at the Hamming distance outputs, notice that the SimHashes follows a

notion of Hamming distance being small (6) when the difference between the mementos

content (​M1​, ​M2​) is small, and the Hamming distance gets larger (27) when the difference

between the mementos (​M2​, ​M3​) is larger.

This notion does not hold with the MD5 hashes. Even though the difference between

HTML contents of the memento ​M1 ​and ​M2 ​is small, the Hamming distance between

MD5 hashes of ​M1, M2​ is much larger. Hence we can conclude that SimHash correlates

better with the webpage similarity.

12

2.2 System Architecture

Fig. 10: System Architecture of tmvis

The TimeMap summarization tool developed is referenced as ‘tmvis’ throughout this

paper. The system at the server side has four stages. As shown in Fig. 10, the Internet

Archive and Archive-It are the prime sources used in this system for the archived content.

Each of these stages are explained in the following sections in detail. Server Storage is

used as a cache to reduce the time to serve the results when the same URI is requested

for the summarization in future. All the thumbnails created are stored in the Image Store,

and SimHashes generated are stored in the Cache, so that it does not have to be

computed again. Below, we present the details of each of these stages.

2.2.1 TimeMap Fetching

The backend for this project is built on top of the base code done by Mat Kelly [2], which

is written in Node.js. In this project, both Internet Archive and Archive-It are considered to

be the prime sources for fetching the archived content of a user provided URI-R. First,

13

when an URI is given as an input to the UI, the prime source is chosen as either Internet

Archive or Archive-It. If Archive-It is chosen as a primary source an additional attribute,

collection number can be specified; if nothing is specified, the argument “all” is considered

to be the default value.

Once the request is made for summarization, the user inputs, such as URI-R, opted

source, and collection number, are gathered. An HTTP request is made to the opted

source (either Internet Archive or Archive-It) to fetch the whole TimeMap of the requested

URI-R. For example, for the URI-R ​http://4genderjustice.org​, URIs to fetch the TimeMap

are as follows:

1. wayback.archive-it.org/1068/timemap/link/http://4genderjustice.org

2. wayback.archive-it.org/all/timemap/link/http://4genderjustice.org

3. web.archive.org/web/timemap/link/https://4genderjustice.org

URI 1 is to fetch the TimeMap of URI-R ​http://4genderjustice.org​ from Archive-It from the

collection number 1068. URI 2 is to fetch the TimeMap of URI-R ​http://4genderjustice.org

from Archive-It, and collection number ‘all’ is the default used in tmvis when the nothing is

provided by the user. The 3rd URI is the request for the TimeMap from the Internet

Archive.

The response for the HTTP request is the whole TimeMap. Fig. 11 and 12 are partial

snapshots of TimeMaps, one each from Internet Archive and Archive-It.

14

http://wayback.archive-it.org/all/timemap/link/http://4genderjustice.org
http://wayback.archive-it.org/all/timemap/link/http://4genderjustice.org
http://wayback.archive-it.org/all/timemap/link/http://4genderjustice.org
https://4genderjustice.org/
http://wayback.archive-it.org/all/timemap/link/http://4genderjustice.org
http://wayback.archive-it.org/all/timemap/link/http://4genderjustice.org

Fig. 11: TimeMap snapshot for ​4genderjustice.org​ from Archive-It

Fig. 12: TimeMap snapshot for​ 4genderjustice.org​ from Internet Archive

As shown in Fig. 11, the TimeMap consists of list of all mementos separated by commas,

each consisting a URI-M ‘rel’ and ‘datetime’ attributes. The first and last memento can be

identified by looking at the ‘rel’ attribute. Along with the list of mementos, the TimeMap

also consists of the original URI, self-reference to TimeMap and a TimeGate as well.

These different resources are identified by the ‘rel’ attribute, which is given one of the

15

http://wayback.archive-it.org/1068/timemap/link/http://4genderjustice.org
http://web.archive.org/web/timemap/link/https://4genderjustice.org

enumerated values: ‘original’, ‘self’, ‘TimeGate, ‘first memento’, ‘memento’, or ‘last

memento’.

Once the TimeMap is obtained, it is then parsed to compile a list of mementos. Each of

the mementos from the list are then fetched, and then are sent through a mechanism to

compute the SimHash, which is explained in the next section.

2.2.2 SimHash Generation on each memento

In this step, first an HTTP request is made to get the HTML content of each of memento.

Only the mementos that return a HTTP 200 status code are considered for further steps

in the process.

It is important to know about the options ‘id_’, ‘if_’ that can be appended to the 14 digit

datetime part of the URI-M:

● Option ‘id_’ is to get the original HTML content without any URL rewriting or banner

insertion.

● Option ‘if_’ is to get the HTML content without the banner, but with links rewritten to

point to the archive.

When computing the SimHash on each of the memento content, ‘id_’ is considered while

fetching the HTML content of the memento, because our requirement is focused on the

original content. That is when SimHash signature generated would actually represent the

original archived resource. Example for such URI-M that uses ‘id_’

http://wayback.archive-it.org/all/20100115160223id_/http://www.odu.edu/​.

16

http://wayback.archive-it.org/all/20100115160223id_/http://www.odu.edu/

If the HTTP request on such URI-M yields a successful HTTP 200 status code, the whole

HTML content is read into a buffer and the SimHash method is called upon this content.

The SimHash library that is used in tmvis is from npmjs packages, the version 0.1.0. 5

To improve the performance of computing the SimHashes, instead of making the HTTP

request to obtain the HTML content on one memento at a time, multiple requests can be

made in parallel. The selection of Node.js for the backend supports this functionality. At

this time the Internet Archive has a restriction of at most 10 requests at a time from a

single IP address.

In the special case that HTML content is returned in gzip format, the ‘content-encoding‘ of

the response header is checked. The ‘zlib’ library is used to unzip the content to handle

such unusual cases.

Once the 128-bit binary SimHash is computed, it is then converted to a 32 character

hexadecimal code and saved in a file that acts as a cache for future requests made on

the same URI. In that way the HTML content for all these mementos do not need to be

fetched repeatedly. When the server is run using the --oes (Override existing content

mode) option, the latest TimeMap is fetched and SimHashes are re-generated for all the

mementos. The next step in the process is to compute the Hamming distances and using

it to filter the unique mementos. The next section explains this in its greater depth.

For popular webpages, like ​cnn.com​ or ​apple.com​, the number of mementos these URIs

have are so large that fetching the TimeMap itself takes a quite a bit of time. As an

example, cnn.com has more than 180,000 mementos. Downloading the HTML content of

each memento in such huge TimeMap takes hours, and it is practically impossible to keep

the user waiting for such long time. Hence, the decision is made for this project that only

5 ​https://www.npmjs.com/package/SimHash

17

https://www.cnn.com/
https://www.apple.com/
https://www.npmjs.com/package/simhash

the last 5000 successfully returned mementos are taken into account for the processing

and the user is notified of the datetime range for the segment used.

2.2.3 Unique mementos filtering based on Hamming distance

The Hamming distance between two strings of equal length is the number of positions at

which the corresponding symbols are different. In other words, it measures the minimum

number of substitutions required to change one string into the other.

The next step after the SimHashes for all the mementos are obtained is to filter amongst

them using the Hamming distance. The filtering process starts by declaring the first

memento of the TimeMap to be included in the summarization. This memento acts as the

base to compare with the subsequent mementos. The other attribute that is required is to

decide upon the Hamming distance threshold. The greater the Hamming distance

threshold selected, the more difference between the HTML content of the mementos,

which means that the resulting filtered archived webpages are more different from each

other.

Consider a scenario of TimeMap of an URI-R that has ​n ​mementos denoted by ​M1​, ​M2,

… ​Mn​. Let the Hamming distance Threshold be ​HDT​. Fig. 13 walks through an example

of the selection algorithm. The filtering process starts by considering the first memento of

the TimeMap to be unique and considered a representative memento. ​M1 ​becomes the

basis to compare with ​M2​. If the calculated Hamming distance between ​M1​ and ​M2​ is

less than ​HDT,​ ​M2 ​is ignored and ​M1 ​remains the basis.​ ​The Hamming distance between

the SimHashes of ​M1 ​and ​M3 ​is calculated, and if this is greater than or equal to HDT, ​M3

is considered as a representative memento and becomes the new basis. If the calculated

Hamming distance between ​M3 ​and ​M4 ​is calculated and is compared with ​HDT​, ​M4 ​is

now eliminated as the Hamming distance measured is considered less than ​HDT. M3 ​still

is the basis for the next memento which is​ M5​. This process continues up to the last

18

memento of the TimeMap. By the end of this filtering process, a list of all mementos with

the Hamming distance and the Hamming basis URI for each of the memento is obtained

as shown in Fig. 14.

Fig. 13: Selection Algorithm based on Hamming distance Threshold

19

Fig. 14: ​Part of mementos from ​www.odu.edu​ from Archive-It with HDT = 5

In Fig. 14 notice how the Hamming basis for memento ​M4 ​has changed. The reason for

this is that the Hamming distance between memento ​M2 ​to memento ​M3 ​is calculated as

16, which is greater than this HDT considered (5), hence memento ​M3 ​becomes a

representative memento and becomes the basis to compare with memento ​M4​.

2.2.4 Thumbnail Creation

The next step is to create thumbnails of the identified representative mementos. This

section explains how these unique representative mementos undergo the process of

screenshot capture of their rendered webpage.

20

http://www.odu.edu/

As discussed, a thumbnail is a small image representation of an archived page taken as a

snapshot. Now the task at hand is to fetch all the mementos marked unique and capture a

screenshot of the rendered mementos.

Originally PhantomJS was used for headless browsing. But this library is no longer 6

supported, so we have replaced it with Puppeteer . The way Puppeteer works is that, first 7

a headless browser is launched and a new browser page is instantiated and is passed the

URI as the argument. Behind the scenes, an actual browser tab is opened and the URI is

rendered. A screenshot request is made on this rendered page. All of this is happening in

headless mode, meaning that the actual UI is being simulated. Instead of a user acting on

the browser, code is made to interact with these headless browsers. These headless

browsers automate the browsing interactions like the opening of a browser, loading the

webpage, and capturing the screenshot.

Puppeteer comes with different options on how long to wait before the DOM content is

fully loaded. A few of those options for waitUntil are as follows:

● domcontentloaded - wait until the entire DOM content is loaded

● networkidle0 - wait until 0 active flight requests

● networkidle2 - wait until there exist only 2 active flight requests

Different archived webpages have different load times depending on the embedded

resources. Even after the entire DOM content is loaded, there is a chance that a few

images that the webpage is rendering might take a bit of time. To accommodate such

extra time, a delay of 2000ms is provided before Puppeteer actually captures a

screenshot. Once a screenshot of the memento is generated, it is preserved and served

for all future requests that need the generation of a screenshot for the same memento.

6 PhantomJS: ​http://phantomjs.org/documentation/
7 Puppeteer: ​https://developers.google.com/web/tools/puppeteer/

21

http://phantomjs.org/documentation/
https://developers.google.com/web/tools/puppeteer/

Fig. 15: Summarized ​http://gulflabor.org/​ from tmvis, Archive-It 1068, 0 second delay

Fig. 16: Summarized ​http://gulflabor.org/​ from tmvis, Archive-It 1068, 2 second delay

Fig. 15 and Fig. 16 show the Image Grid view of tmvis summarizing the TimeMap of

http://gulflabor.org/​ from collection 1068 of Archive-It. Notice that the thumbnails in Fig. 16

are more fully loaded than in Fig. 15. The only difference made with Fig. 16 was that

Puppeteer is made to wait for 2 seconds after it renders the webpage of the memento

using the method ​page.waitFor​,​ ​before the screenshot capture command is issued.

Having this delay incorporated, the thumbnails better represent the actual rendered

22

http://gulflabor.org/
http://gulflabor.org/
http://gulflabor.org/

mementos and hence user is provided with clear view of rendered webpage of

representative mementos.

3. Visualizations & System Walkthrough

3.1 Visualizations

The UI of this project consists of three different visualizations: Image Grid, Slider, and

Timeline. The base code used here is from Shankar [3].

The ​Image Grid ​is a simple view, where the thumbnails of all the unique mementos are

arranged in a left to right, top to bottom manner. The main intention is to show the user all

these unique archived versions of the webpage so that the user gets an overview of how

the webpage has changed over time. Fig. 17 shows an example of the grid view for

www.odu.edu​.

Fig. 17: Grid view of ​http://www.odu.edu​ generated by tmvis.

23

http://www.odu.edu/
http://www.odu.edu/

The ​Image Slider ​imitates the photo roller functionality used in iPhoto. By simply moving

the cursor across the thumbnail, a different thumbnail in the order is shown to the user.

Clicking on the thumbnail takes the user to the actual archived page, giving the user the

opportunity to explore more. As an additional feature, Play and Pause buttons along with

a loop option is given. Clicking on play and checking the loop option provides the same

feel as an animated GIF produced over all these unique thumbnails. Fig. 18 shows a

static example of the image slider for www.odu.edu.

 Fig. 18: Slider view of ​http://www.odu.edu​ generated by tmvis.

The ​Timeline View ​arranges the thumbnails according to the datetime. The Timeline view

is equipped with zoom, next, previous, next unique, previous unique buttons to easily

navigate between the unique and regular thumbnails. All the unique mementos are

represented with yellow stripes and the regular ones are represented by gray stripes on

the timeline. The Timeline view is based on Timeline Setter library , developed by 8

ProPublica. Fig. 19 shows an example of the timeline view for www.odu.edu.

8 ​http://propublica.github.io/timeline-setter/

24

http://www.odu.edu/
http://propublica.github.io/timeline-setter/

Fig. 19: Timeline view showing summarized ​http://www.odu.edu​ generated by tmvis

3.2 System Walkthrough

The task of summarizing the URI happens in two phases from a user’s perspective. The

first phase shown in Fig. 20, is where the user can request the number of unique

thumbnails to summarize the TimeMap for a particular URI. The user can input the URI-R

(ex: ​https://4genderjustice.org/​), the URI-M (ex:

https://web.archive.org/web/20180326162903/https://4genderjustice.org/​), or the URI-T

(ex: ​https://web.archive.org/web/*/https://4genderjustice.org/​).

The other input that the user provides to the system in this phase is the source for the

archival content, either the Internet Archive or Archive-It. Opting for Archive-It requires the

user to pass in collection number as an additional parameter. If nothing is input in here,

the value ‘all’ is considered as the collection number.

25

http://www.odu.edu/
http://4genderjustice.org/
https://web.archive.org/web/20180326162903/https://4genderjustice.org/
https://web.archive.org/web/*/https://4genderjustice.org/

Fig. 20 shows the home page of the application.

Fig. 20: Home page of the service ​tmvis.cs.odu.edu

By clicking on the “Calculate # of Thumbnails” button, a request is sent to the server and

processing on the server side starts. The user is then notified with the continuous stream

of events taking place at the server through a progress window, as in Fig. 21.

Fig. 21: Home page of ​tmvis.cs.odu.edu​ with progress window

26

http://www.tmvis.cs.odu.edu/
http://www.tmvis.cs.odu.edu/

Once the server side computation of unique number of representative thumbnails is done,

the user is presented with the date range of mementos under consideration along with

options for choosing the number of unique thumbnails. Fig. 22 shows the output that

tmvis has provided after computing the number of unique thumbnails on

http://www.atlanticyards.com​ with Archive-It as the source. Fig. 22 shows that tmvis can

summarize the TimeMap of ​http://www.atlanticyards.com​ using 6, 5, or 4 thumbnails.

Choosing 6 thumbnails will summarize the TimeMap with more similar webpages and

hence takes more time to generate. Choosing 4 thumbnails summarizes the TimeMap

with more distinct webpages.

Fig. 22: ​tmvis.cs.odu.edu​ showing the number of unique thumbnails calculated for

atlanticyards.com

The second phase of Thumbnail Generation starts when the user chooses the desired

number of unique thumbnails and then clicks on the “Generate Thumbnails” button. The

server starts processing with Puppeteer in action, rendering each memento and capturing

a screenshot. Once the screenshots i.e, thumbnails, are captured upon all the mementos,

27

http://www.atlanticyards.com/
http://www.atlanticyards.com/
http://tmvis.cs.odu.edu/
http://www.atlanticyards.com/

they are presented to user by building the three visualization widgets as show in the

Section 3.1. Fig. 23 shows how the user is presented with the unique thumbnails, with the

default tab showing the Grid View. The users can switch between the tabs to view the

other two visualization widgets, Image Slider and Timeline view.

Video screencasts of the system demo are available at

1. Calculating # of Thumbnails: ​https://www.youtube.com/watch?v=N_pjaczn3gk

2. Thumbnail Generation: ​https://www.youtube.com/watch?v=wdtSsxjW38M

 Fig. 23: ​tmvis.cs.odu.edu​ showing the generated thumbnails arranged in grid for

atlanticyards.com

28

https://www.youtube.com/watch?v=N_pjaczn3gk
https://www.youtube.com/watch?v=wdtSsxjW38M
http://tmvis.cs.odu.edu/
http://www.atlanticyards.com/

4. Technology Stack & Deployment Details

4.1 Technology Stack

The project is developed on Node.js as the backend. The frontend is implemented using

HTML, Bootstrap, and JavaScript. In addition, the Timeline Setter library is used to

implement the Timeline View. This service is deployed on the WSDL Docker machine

maintained by ODU CS.

The service is hosted at ​http://www.tmvis.cs.odu.edu​. The Github repository

https://github.com/oduwsdl/tmvis​ has the entire code base. The README details out all

the essentials needed and explains the steps for local deployment, and is included as

Appendix A.

4.2 Service Usage

Below are the different ways using which one can use the service.

4.2.1 Using the UI of the webservice

One can summarize the TimeMap of an URI by using the service hosted at

http://www.tmvis.cs.odu.edu​. Video screencasts of the system demo are as mentioned in

Section 3.2.

4.2.2 By constructing an URL

We followed the RESTful design for the tmvis URLs, which makes the construction and

sharing easy. Consider that a user wants to summarize the TimeMap of an URI

http://4genderjustice.org/​ from the collection 1068 of Archive-It using the tmvis hosted

29

http://www.tmvis.cs.odu.edu/
https://github.com/oduwsdl/tmvis
http://www.tmvis.cs.odu.edu/
http://4genderjustice.org/

service. The following is the constructed URL of the first phase for knowing the

representative mementos count

http://tmvis.cs.odu.edu/alsummarizedview/archiveit/1068/4/stats/http://4genderjustice.org​,

where ‘​archiveit/1068​’ in the URL path represents collection number 1068 from Archive-It

as the source. The num

ber ‘​4​’ represents the Hamming distance threshold that decides number of representative

mementos to return to the user, and ‘​stats​’​ ​is to notify the service that user is interested in

knowing the possible options for representative unique mementos count. The last part of

the URL path ‘​http://4genderjustice.org/​’ represents the original URI-R to be

summarized by tmvis.

The constructed URL of the second phase is

http://tmvis.cs.odu.edu/alsummarizedview/archiveit/1068/4/summary/http://4genderjustice

.org​. One can notice that ​‘stats​’​ ​is replaced with ‘​summary​’​ ​here and is used to notify the

service that user is interested to view the visualizations with the thumbnails created. The

user can quickly share this URL with someone else who wants to see the summarized

TimeMap. The new user can now view the TimeMap summary of

http://4genderjustice.org/​ by just pasting the shared tmvis URL​ ​in the address bar of the

browser.

4.2.3 Run a local instance

Anybody who is interested in running the service locally can do so by following the steps

mentioned in project README. Users who wants to summarize popular webpages, which

may have quite large TimeMaps, should run the service locally, as the hosted service only

considers the latest 5000 mementos for summarization. With the local installation, the

user could comment out few lines of code to make the service consider all the mementos

of the TimeMap. These changes are outlined in Appendix B.

30

http://tmvis.cs.odu.edu/alsummarizedview/archiveit/1068/4/stats/http://4genderjustice.org/
http://tmvis.cs.odu.edu/alsummarizedview/archiveit/1068/4/summary/http://4genderjustice.org/
http://tmvis.cs.odu.edu/alsummarizedview/archiveit/1068/4/summary/http://4genderjustice.org/
http://tmvis.cs.odu.edu/alsummarizedview/archiveit/1068/4/summary/http://4genderjustice.org/
http://4genderjustice.org/

Also running the service locally gives the user control over the delay that can be provided

to the Puppeteer before capturing the screenshot, so that fully rendered thumbnails can

be generated. Users who want to extend the functionality of this service by modifying the

code base can use the option of running the service on a local Docker container while in 9

development.

4.2.4 CLI tools

In addition to hosted service, a command line tool is also provided through which a user

can compute the SimHashes on all the mementos of TimeMap using the option ​‘os’​ (Only

SimHash). All the available options are given below. If the option ‘​os​’ is not provided by

default all the steps in the process SimHash generation, Hamming distance based

filtering, and thumbnails creation (uses PhantomJS) will take place, and a JSON object is

returned to the user. Some improvements have to be made here to make these CLI tools

more usable. The code base for these CLI tools is at branch ​cli ​of

https://github.com/oduwsdl/tmvis.

The following command shows the way of executing the command line tool and the

possible options:

> ​node AlSummarization_OPT_CLI_JSON.js URI-R [--debug] [--hdt 4] [--ia || --ait] [--oes]

[--ci 1068] [-os]

Here is the single line description of what each option stands for

URI-R ​ -> ex: ​http://4genderjustice.org/

debug ​ -> Run in debug mode

hdt ​ -> Hamming distance Threshold

ia ​ -> The Internet Archive as the source

ait ​ -> Archive-It as the source

oes ​ -> Override Existing Simhashes

ci ​ -> Collection Identifi

os ​ -> Only Simhash

9 ​https://www.docker.com/what-docker

31

https://www.docker.com/what-docker

5. Future Enhancements
Below are plans for future enhancements to tmvis.

5.1 Downloadable Animated GIF

We want to make a downloadable animated GIF as our fourth visualization widget.

Currently the animated GIF style of animation on the Image Slider view is implemented

via JavaScript. The thumbnails created on the server can be used for making the

animated GIF by the usage of any GIF creation libraries. This animated GIF can be made

downloadable, which makes the sharing of the summarized TimeMap very easy.

5.2 Embeddable plug and play service

The other idea that we wanted to implement is to make the entire service as an

embeddable plug and play resource. The maintainer of a webpage can embed a few lines

of code in the webpage’s source to get this plug and play resource up and running. Fig.

24 shows a mockup of the image slider widget on the NEH ODH webpage,

https://www.neh.gov/divisions/odh​.

32

https://www.neh.gov/divisions/odh

Fig. 24: A picture depicting the image slider widget embedded on the live webpage of

https://www.neh.gov/divisions/odh

5.3 User control over representative thumbnails selection

We want to give the user control over selecting the representative mementos, The first

control is that user can ask the tmvis service to pick a unique memento one each from

each of the years in the TimeMap. The second idea is that we want to provide the user

with the feature of selecting and shortlisting the unique mementos that user wants to see

in future from the representative mementos returned by tmvis.

6. Conclusion

The goal of this project is to provide a webservice that summarizes the TimeMap of an

URI by selecting the unique representative mementos. This service uses the source code

from Archive Thumbnails [2] as the base for the server side and the source code from

Visualization widgets [3] for the client side. Both the code bases are modified to blend in

with each other and merged into a single repository https://github.com/oduwsdl/tmvis. The

service is hosted at ​http://www.tmvis.cs.odu.edu​. The server and client in this deployed

33

https://www.neh.gov/divisions/odh
http://www.tmvis.cs.odu.edu/

webservice are not tightly coupled, meaning that the server returns a JSON object as the

response, and the client then reads upon this JSON and makes the visualization widgets

on the fly. A continuous notification system is also implemented, so the user is better

notified with the progress while server computes the results.

References
[1] A. AlSum and M. L. Nelson. 2014. Thumbnail Summarization Techniques for Web

Archives. In Proceedings of ECIR, pp. 299-310.

[2] Mat Kelly. 2013. Implementation of ​Thumbnail Summarization Techniques​.

https://github.com/machawk1/ArchiveThumbnails

[3] Surbhi Shankar. 2017. Visualizing Thumbnails Of Archived Web Pages,ODU CS

Master’s Project. ​http://www.cs.odu.edu/~mweigle/papers/shankar-ms-proj-17.pdf

[4] Herbert Van de Sompel, Michael L. Nelson, and Robert Sanderson. 2013. HTTP

framework for time-based access to resource states – Memento, Internet RFC 7089.

http://tools.ietf.org/html/rfc7089

[5] Herbert Van de Sompel, Michael L. Nelson, Robert Sanderson, Lyudmila L.

Balakireva, Sco​ Ainsworth, and Harihar Shankar. 2009. Memento: Time Travel for the

Web. Technical Report arXiv:0911.1112

[6] Michele C. Weigle. 2017. Visualizing Webpage Changes Over Time - new NEH Digital

Humanities Advancement Grant.

http://ws-dl.blogspot.com/2017/10/2017-10-16-visualizing-webpage-changes.html

34

http://www.cs.odu.edu/~mln/pubs/ecir-2014/ecir-2014.pdf
https://github.com/machawk1/ArchiveThumbnails
http://www.cs.odu.edu/~mweigle/papers/shankar-ms-proj-17.pdf
http://tools.ietf.org/html/rfc7089
http://ws-dl.blogspot.com/2017/10/2017-10-16-visualizing-webpage-changes.html

Appendix A

The following is the README the repository ​https://github.com/oduwsdl/tmvis​, as of May
1, 2018.

Timemap Visualization

A web service for TimeMap visualization based on Mat's (@machawk1)

https://github.com/machawk1/ArchiveThumbnails​ which itself is an implementation of

Ahmed AlSum's 2014 ECIR paper titled ​"Thumbnail Summarization Techniques for Web

Archives"​ for the Web Archiving Incentive Program for Columbia University Libraries'

grant, "Visualizing Digital Collections of Web Archives".

Requirements

Node.js​ is required to run the service. Once Node is installed, the packages required to

use the service can be installed by running npm install -g in the root of the project

directory.

Running

To execute the code, run ​node tmvis.js​.

To query the server instance generated using your browser visit
http://localhost:3000/alsummarizedtimemap/archiveit/1068/4/[stats |

summary]/http://4genderjustice.org/​, which has the attributes path as

primesource/ci/hdt/role/URI-R​ substitute the URI-R to request a different webpage

summarization. The additional parameters of role is used to specify the values '​stats​' or

'​summary​',

stats​: for getting the no of unique mementos

35

https://github.com/oduwsdl/tmvis
https://github.com/machawk1/ArchiveThumbnails
http://www.cs.odu.edu/~mln/pubs/ecir-2014/ecir-2014.pdf
http://www.cs.odu.edu/~mln/pubs/ecir-2014/ecir-2014.pdf
https://nodejs.org/

summary​: to get the the unique mementos along with the screenshots captured

ci ​is used to specify the collection identifier if not specified the argument ​'all'​ is used,

primesource​ gets the value of 'archiveIt' or 'internetarchive' as to let the service know

which is the primary source.

Example URIs

● http://localhost:3000/alsummarizedtimemap/archiveit/1068/4/stats/http://4g

enderjustice.org/

● http://localhost:3000/alsummarizedtimemap/archiveit/1068/4/summary/http://

4genderjustice.org/

Running as a Docker Container (Non development mode:
Recommended for naive users)

Follow the following steps:

$ git clone https://github.com/oduwsdl/tmvis.git

$ cd tmvis

$ docker image build -t timemapvis .

$ docker container run --shm-size=1G -it --rm -p 3000:3000 timemapvis node

tmvis.js

Running as a Docker Container (experimental)

Running the server in a ​Docker​ container can make the process of dependency

management easier. The code is shipped with a Dockerfile to build a Docker image that

will run the service when started. This document assumes that you have Docker setup

already, if not then follow the ​official guide​.

36

https://www.docker.com/
https://docs.docker.com/installation/

Building Docker Image

Clone the repository and change working directory (if not already) then build the image.

$ git clone https://github.com/oduwsdl/tmvis.git

$ cd tmvis

$ docker image build -t timemapvis .

In the above command ​timemapvis​ is the name of the image which can be anything, but

the same needs to be used when running the container instance.

Running Docker Container

docker run -it --rm timemapvis bash

In another terminal

cd tmvis

docker cp (CONTAINER ID CREATED ABOVE):/app/node_modules/ ./

docker run --shm-size=1G -it --rm -v "$PWD":/app -p 3000:3000 --user=$(id

-u):$(id -g) timemapvis bash

node tmvis.js

In the above command the container is running in detached mode and can be accessed

from outside on port ​3000​ at ​http://localhost:3000/​. If you want to run the service on a

different port, say ​80​ then change ​-p 3000:3000​ to ​-p 80:3000​.

In order to persist generated thumbnails, mount a host directory as a volume inside the

container by adding ​-v /SOME/HOST/DIRECTORY:/app/assets/screenshots​ flag when

running the container.

37

http://localhost:3000/

Container is completely transparent from the outside and it will be accessed as if the

service is running in the host machine itself.

In case if you want to make changes in the ​tmvis​ code itself, you might want to run it in

the development mode by mounting the code from the host machine inside the container

so that changes are reflected immediately, without requiring an image rebuild. Here is a

possible workflow:

$ git clone https://github.com/oduwsdl/tmvis.git

$ cd tmvis

$ docker image build -t timemapvis .

$ docker container run --shm-size=1G -it --rm -v "$PWD":/app --user=$(id

-u):$(id -g) timemapvis npm install

$ docker container run --shm-size=1G -it --rm -v "$PWD":/app -p 3000:3000

--user=$(id -u):$(id -g) timemapvis

Once the image is built and dependencies are installed locally under the ​node_modules

directory of the local clone, only the last command would be needed for continuous

development. Since the default container runs under the ​root​ user, there might be

permission related issues on the ​npm install​ step. If so, then try to manually create the

node_modules​ directory and change its permissions to world writable (​chmod -R a+w

node_modules​) then run the command to install dependencies again.

Regarding License

Though GPL Licensing was used for base

(​https://github.com/machawk1/ArchiveThumbnails​) of this repository, we have chosen the

MIT license . This is changed with the permission from the original author, @machawk1. 10

10 https://en.wikipedia.org/wiki/MIT_License

38

https://github.com/machawk1/ArchiveThumbnails

Usage of the service

Running this service gives provides an user with the array of JSON object as the

response (webservice model), which then has to be visualized with the UI tool deployed

at ​http://tmvis.cs.odu.edu/​ for which the code is available at

https://github.com/​oduwsdl​/tmvis/​ under public folder

Request format (Role -> stats)

curl -il

http://localhost:3000/alsummarizedtimemap/archiveIt/1068/4/stats/http://4gender

justice.org/

Mapping of attributes of URI to the values are as follows:

 primesource -> archiveIt

 hammingdistance -> 4

 role -> stats

 collection Identifier -> 1068

 URI-R under request -> http://4genderjustice.org/

Response format

{

 "totalmementos": 21,

 "unique": 2,

 "timetowait": 0

}

Request format (Role -> summary)

curl -il

http://localhost:3000/alsummarizedtimemap/archiveIt/1068/4/summary/http://4gende

rjustice.org/

39

http://tmvis.cs.odu.edu/
https://github.com/mgunn001/tmvis/
https://github.com/mgunn001/tmvis/

Mapping of attributes of URI to the values are as follows:

 primesource -> archiveIt

 hammingdistance -> 4

 role -> summary

 collection Identifier -> 1068

 URI-R under request -> http://4genderjustice.org/

Response format

[

 {

 "timestamp": 1435787801,

 "event_series": "Thumbnails",

 "event_html":

'http://localhost:3000/static/timemapSum_httpwaybackarchiveitorg1068201507012156

41http4genderjusticeorg.png',

 "event_date": "Aug. 01, 2015",

 "event_display_date": "2015-07-01, 21:56:41",

 "event_description": "",

 "event_link":

"http://wayback.archive-it.org/1068/20150701215641/http://4genderjustice.org/"

 },

 {

 "timestamp": 1435789960,

 "event_series": "Non-Thumbnail Mementos",

 "event_html": 'http://localhost:3000/static/notcaptured.png',

 "event_html_similarto":

'http://localhost:3000/static/timemapSum_httpwaybackarchiveitorg1068201507012156

41http4genderjusticeorg.png',

 "event_date": "Aug. 01, 2015",

 "event_display_date": "2015-07-01, 22:32:40",

 "event_description": "",

 "event_link":

"http://wayback.archive-it.org/1068/20150701223240/http://4genderjustice.org/"

40

 },....

]

Appendix B
The following screenshot of the code snippet shows the modification needed in the code

to consider all the mementos of TimeMap which was limited to last 5000 mementos

before. The same can be accessed using the link

https://github.com/oduwsdl/tmvis/commit/3a47650700cd459cf28182b5572c411f4b482bac

Fig. 25: A picture depicting the modifications to be done to consider all the mementos into account.

41

