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ABSTRACT

This paper provides a way to think formally about the aggre-
gation processes that take place in networks where individ-
ual actors (whether sensors, robots, or people) possess data
whose value is discounted over time. The various actors use
data to make decisions: the larger the value, the better (i.e.
more informed) the decision. At every moment, individual
actors have the choice of making a decision or else to defer
decision to a later time. However, the longer they wait, the
lower the value of the data they hold. To counter-balance
the effect of time discounting, we define an algebraic oper-
ation that we call aggregation, whereby two or more actors
integrate their data in the hope of increasing its value.

Our main contribution is a formal look at the value of
time-discounted information and at the algebra of its ag-
gregation. We allow aggregation of time-discounted infor-
mation to proceed in an arbitrary, not necessarily pairwise,
manner. Our model relates aggregation decisions to the en-
suing value of information and suggests natural thresholding
strategies for the aggregation of the information collected by
sets of network actors. A sensor network with the mission
of intrusion detection is used throughout as an illustrative
example. The accuracy of our theoretical predictions was
confirmed by simulating a number of realistic scenarios.
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1. INTRODUCTION
The designers of mission-oriented systems know that timely

information aggregation is important, but they do not have
an obvious way of measuring its value. There is a good rea-
son for this: aggregation is a complex concept whose seman-
tics are time-driven and context-dependent. Yet failure to
aggregate information in a timely manner may have catas-
trophic consequences: terrorists penetrate our perimeters,
natural disasters overwhelm local governments, and foreign
hackers tamper with our national infrastructure.

The value of information has been a perennial topic of
research in economics [10]. The economic argument is that
information is a good that can be traded, and hence has
value [7]. Moreover, this value is subject to deteriorating
over time [2]. In the light of this, it is somewhat surprising
that the dynamics of information deterioration over time has
received very little attention in the literature [5].

It has long been recognized that assessing the value of
time-discounted information is hard to evaluate being too
dependent on subjective human valuation [4]. It is, thus,
important to consider formal ways of defining the aggre-
gation of time-discounted information so that aggregation
might be better described and understood. This may lead
to better designs for mission-oriented systems.

Against the backdrop of time pressure is the act of aggre-
gation itself. While it is commonly accepted that the value
of information often increases as a result of aggregation, al-
most nothing is known about the dynamics of aggregation
and about the value of the resulting information, especially
in the presence of time discounting.

The main contribution of this work is a theoretical one: by
proposing a model where there was none before, we provide
a theoretical base upon which decisions about information
aggregation can be made, measurements taken, and exper-
iments performed. More specifically, our main contribution
is a formal look at time-discounted information and at the
algebra of its aggregation. In addition, this work suggests
decision strategies for the aggregation of the information col-
lected by sets of actors, whether sensors, robots, or people.

Our results find applications to fields in which hybrid net-
works of humans and machines need to be formed, such as
mobile ad hoc and sensor network designs deployed in sup-
port of various missions. In both areas, there is a strong
need to model not only aggregation, but also the dynamics
of aggregation, as the links between different nodes shift in
response to the actions of the network actors, who are in
turn shaped by the mission at hand [8].



While our theoretical results have a wide applicability,
we use sensor networks as an illustration of the concepts
we discuss. This choice was suggested, in part, by the fact
that sensor networks are key ingredients in mission-oriented
systems, and also by the fact that in these networks time is of
the essence and, consequently, the value of the information
often changes so rapidly as to defy deterministic modeling
[6].

As it turns out, in mission-oriented sensor networks, the
primary agents are computational: the individual sensors
collect, share and aggregate information. In every mission-
oriented sensor network there is, ultimately, a human com-
ponent, but before reaching the human the sensor network
already aggregates and values information. This process
consumes power that needs to be minimized [11]. Even in
situations where power is not a major issue, human atten-
tion often is. In other words, it may be that not everything
can be monitored all the time, and therefore human par-
ticipation in the network needs to minimized. Thus, the
aggregation problem for sensor networks is often a multi-
attribute one: try to detect events with minimal delay and
aggregate detection, while at the same time try to minimize
the use of energy [7].

The remainder of the paper is organized as follows: Sec-
tion 2 presents our motivating scenarios. We discuss our as-
sumption about aggregation dynamics in Section 3. Further,
Section 4 provides a formalism for time-discounted informa-
tion. Section 5 investigates the algebra of aggregation. In
Section 6 we put our theory to work by considering a simple
but realistic aggregation scenario. In Section 7, we present
our simulation results. Finally, Section 8 offers concluding
remarks and directions for future investigations.

2. MOTIVATING SCENARIOS
Consider a sensor network deployed with the specific mis-

sion of protecting a power plant. The information about a
possible attack on the power plant will be more valuable the
less it is delayed. It will lose value continuously as there
will not be adequate time to prepare. Thus, there are pow-
erful incentives for reporting an intrusion event as soon as
possible. However, the cost of a false alarm is considered to
be prohibitive in terms of the amount of human attention
it requires. Thus, there are also incentives for aggregating
individual sensor readings before reporting.

To begin, imagine that the power plant is threatened by
an intruder who intends to sabotage the turbines. Again,
the less delay in the information about the intrusion event,
the better. The sensors that have detected the event need
to decide whether to report an intrusion (and risk trigger-
ing a false alarm) or wait until several other sensors have
corroborated the intrusion. With each moment of delay in
notification of the intrusion, the ability to find the intruder
decreases, as the intruder may be moving, and the area to
search increased quadratically in the time since detection.

Next, imagine a foreign hacker who launches an attack
on the network equipment controlling the power plant. The
earlier the cyber-attack is detected, the higher the chance
of thwarting the intruder. But as time goes on, the worse
the attack gets. This type of cyber-attack may well dou-
ble or triple the malicious network traffic with each time
increment. Thus, the value of the information to the de-
cision maker will deteriorate rapidly, as it becomes harder

and harder to fight the attack as the network becomes over-
whelmed.

The common characteristic of all the above scenarios is
that getting information quickly has value. On the other
hand, there are costs associated with obtaining information.
For example, it is customary to assume that the sensors
have at their disposal a modest, non-renewable energy bud-
get. The sensors are usually programmed to preserve energy
while, at the same time, they try to detect intrusion data
early and aggregate the data collected [7].

3. ASSUMPTIONS ABOUT AGGREGATION

DYNAMICS
We assume a set of actors associated with particular pieces

of information. This may be both sensor networks, where
the actors are sensors, and social networks, where the ac-
tors are people. Computer networks also can be modeled in
this way. Such situations are complex, with new and emerg-
ing external inputs, feedback loops, etc. Here we simplify
by considering a situation in which nodes have values, which
are deteriorating with time, and must decide to aggregate or
not with others. There is a cost to aggregation. In the case
of sensor networks, the cost has to do with the power needed
to communicate and process information and also with the
risk of false positives. Indeed, the cost of a false alarm is
considered to be prohibitive. We assume that the sensors
run on small, non-rechargeable batteries, and so their en-
ergy budget cannot be replenished. In other networks, the
resource to be consumed may be human attention; the idea,
though, is the same. It is worth noting that occasionally
aggregation may not return as much value as it costs to
perform the aggregation [9].

4. TIME-DISCOUNTED INFORMATION
Before we begin, we feel it is important to point out that

in this paper we do not distinguish between data (a.k.a raw
information) and processed data, using the term information
for both. We trust, the context will disambiguate. In partic-
ular, the sensory information collected by individual sensors
should be interpreted as data, while the result of aggregat-
ing data collected by several sensors should be construed as
bona-fide processed data, i.e., information.

The phenomena we discuss occur in continuous time. Hav-
ing witnessed an event and having collected relevant infor-
mation, the sensors have the choice to report a decision or
else to defer the decision to a later time. Consider a sen-
sor that, having witnessed an event, has collected relevant
information. Let X be the random variable that describes
the “amplitude” of the sensed attribute. To specify that the
sensor has collected the data at time r we shall write X(r)
and refer to it as the value of the data at time r. To avoid
trivialities, in the sequel of this work we shall assume that
X(r) 6= 0.
The value of information degrades with time. In its most

general form, for t ≥ r, the discounted value of X at time t
is given by

X(t) = X(r)g(r, t) (1)

where g : R+ ∪ {0} × R
+ ∪ {0} → [0, 1] is referred to as a

discount function.
In many practical applications, the discount function in

(1) is, actually, a function of the difference t − r only, that



is, a function of the difference between the time of data
collection and the current time. With this in mind, in this
paper we are interested in discount functions such that

X(t) = X(r)δ(t− r) (2)

with δ : R+ ∪ {0} −→ [0, 1].
Equation (2) tells us that the penalty of waiting for t− r

time is that the value of the information collected by the
sensor decreases from X(r) to X(t).

Obviously, X(r) = X(r)δ(0) implies

δ(0) = 1. (3)

Further, we assume that after a very long time, the value of
information vanishes. Formally, we assume that

lim
x→∞

δ(x) = 0. (4)

We begin by proving the following useful result that will
be instrumental in obtaining a closed form for δ.

Lemma 4.1. If X(r) 6= 0 then for all r, s, t with 0 ≤ r ≤
s ≤ t

δ(t− r) = δ(s− r)δ(t− s). (5)

Proof. Applying (2) to the pairs (r, s), (s, t), (r, t) we obtain
X(s) = X(r)δ(s − r), X(t) = X(s)δ(t − s) and X(t) =
X(r)δ(t− r) which, combined, yield

X(r)δ(t− r) = X(r)δ(s− r)δ(t− s).

Since X(r) 6= 0 the conclusion follows.

Observe that by virtue of (4), δ cannot be identically 1
on R

+ ∪{0}. Our next result shows that, in fact, δ takes on
the value 1 if and only if x = 0.

Lemma 4.2. δ(x) = 1 if and only if x = 0.

Proof. Recall that by (3), if x0 = 0 then δ(x0) = 1. To prove
the converse, let x0 be the largest non-negative real for which
δ(x0) = 1. It suffices to show that x0 = 0. Suppose not and
consider δ(2x0). We can write

δ(2x0) = δ(2x0 − 0)

= δ(2x0 − x0)δ(x0 − 0) [by (5)]

= δ(x0)δ(x0)

= 1, [since δ(x0) = 1]

contradicting the maximality of x0. Thus, x0 = 0 and the
proof of the lemma is complete.

Corollary 4.3. For all x > 0, 0 < δ(x) < 1.

Proof. Follows immediately from (3) and Lemma 4.2, com-
bined.

For all r, s, t with 0 ≤ r ≤ s ≤ t let x and y stand for
s− r and t− s, respectively. In this notation, t− r = x+ y

and (5) can be written in the equivalent form

δ(x+ y) = δ(x)δ(y) (6)

with both x and y non-negative. As it turns out, the func-
tional equation (6) has a simple solution that we discuss
next.

Theorem 4.4. If the function f : [0,∞) −→ R satisfies the
functional equation f(x + y) = f(x)f(y) and is not identi-
cally zero then there exists a constant a such that

f(x) = e
ax (7)

Our proof of Theorem 4.4 relies on several lemmas.

Lemma 4.5. If f(x) 6≡ 0, then f(1) 6= 0.
Proof. We prove the contrapositive. Assume that f(1) = 0.
First, we claim that f(y) = 0 for all y ≥ 1. This follows
since for x = y − 1 > 0, f(y) = f(1 + x) = f(1)f(x) = 0.
Next, observe that f(1) = f( 1

2
+ 1

2
) = f( 1

2
)2 = 0 and,

thus, f( 1
2
) = 0. This, in turn, implies that f(x) = 0 for all

1
2
≤ x ≤ 1. A similar argument shows that f( 1

4
) = 0 and

that f(x) = 0 for all 1
4
≤ x ≤ 1

2
. Now a simple inductive

argument shows that for all positive integers n > 0, f( 1
2n

) =

0 and that f(x) = 0 for all x in the range 1
2n

≤ x ≤ 1
2n−1 .

The conclusion follows.

By Lemma 4.5, we assume f(1) 6= 0; in fact, f(1) = f( 1
2
)2

guarantees that f(1) > 0. For all x ≥ 0 define the function

φ(x) = f(x)
f(1)x

. Our goal is to show that φ(x) ≡ 1 on [0,∞).

Lemma 4.6. For all x, y ≥ 0, φ(x+ y) = φ(x)φ(y).

Proof. By definition, we have φ(x+y) = f(x+y)

f(1)x+y = f(x)f(y)

f(1)x+y =
f(x)
f(1)x

f(y)
f(1)y

= φ(x)φ(y) as claimed.

Lemma 4.7. For all positive integers n, φ(n) = 1.

Proof. By induction: first, φ(1) = f(1)
f(1)

= 1. Assuming φ(n−

1) = 1, it follows that φ(n) = φ(n− 1+1) = φ(n− 1)φ(1) =
1.

Corollary 4.8. φ(0) = 1.

Proof. 1 = φ(1) = φ(1+0) = φ(1)φ(0) = 1·φ(0) = φ(0).

Lemma 4.9. For every z > 1 there exists z0 ∈ [0, 1] such
that φ(z0) = φ(z).

Proof. For every real z, there exists a unique positive integer
n such that n ≤ z < n+1. Clearly, z0 = z−n ∈ [0, 1]. Now,
φ(z0) = φ(z0)φ(n) = φ(z0 + n) = φ(z).

Corollary 4.10. If φ(x) ≡ 1 on [0,1] then φ(x) ≡ 1 on
[0,∞)

Lemma 4.11. φ ≡ 1 on [0, 1].

Proof. Otherwise, the set A = {y ∈ [0, 1] | φ(y) 6= 1} is
non-empty. Let x = inf A. By Corollary 4.8, x > 0. How-
ever, now φ(x) = φ(x

2
+ x

2
) = φ(x

2
)2 6= 1 and so x

2
∈ A,

contradicting the choice of x.

Proof of Theorem 4.4 Suppose f(x) is not identically
zero. By the definition of φ, Lemma 4.11 and Corollary 4.10
it follows that for all x ≥ 0, f(x) = f(1)x. Moreover, since
f(1) > 0 we can write

f(x) = e
ax

where a = ln f(1). This completes the proof of Theorem 4.4.

We are now in a position to show that the discount func-
tion δ is, in fact, an exponential. The details are spelled out
by the following theorem.



Theorem 4.12. For all r and t with 0 ≤ r ≤ t,

δ(t− r) = e
−µ(t−r)

where

µ = − ln δ(1) > 0

Proof. Recall that by (6) the discount function δ satisfies
the conditions of Theorem 4.4. Moreover, by Corollary 4.3
0 < δ(1) < 1 and so ln δ(1) < 0. Thus, with

µ = − ln δ(1) > 0

the expression of δ(t − r) becomes δ(t − r) = e−µ(t−r), as
claimed.

Theorem 4.12 shows that, under mild assumptions, the
discount function is an exponential. We note that a similar
result was derived by [6, 9] in the case of discrete time.

4.1 An Alternate Discount Function
The goal of this subsection is to present a variant of the

discount function δ defined in (2). Indeed, in some applica-
tions, the discounted value of the information at time t > r

may be naturally expressed as

X(t) = X(r)−X(r)ψ(t− r) (8)

where ψ : R+ ∪ {0} → [0, 1]. As we are about to show, the
discount functions δ and ψ are related in a simple fashion.
To see this, consider three reals r, s, t with 0 ≤ r < s < t

and assume that X(r) 6= 0. It is easy to see that, by virtue
of (8), we can write

X(t) = X(r)[1− ψ(t− r)]

= X(r)[1− ψ(t− s)][1− ψ(s− r)]

implying that

1− ψ(t− r) = [1− ψ(t− s)][1− ψ(s− r)].

By writing ξ(t− r) = 1−ψ(t− r), ξ(s− r) = 1−ψ(s− r)
and ξ(t− s) = 1− ψ(t− s) we obtain

ξ(t− r) = ξ(s− r)ξ(t− s)

which is, essentially, identical to (5). As an immediate con-
sequence of Theorem 4.12

1− ψ(t− r) = e
−λ(t−r)

where λ = − ln[1− ψ(1)] > 0.
Finally, simple algebra reveals that

X(t) = X(r)e−λ(t−r)

which is of the same form as (2) and so the discount functions
δ and ψ are, essentially, the same.

5. AGGREGATION
To counter-balance the effect of time discounting, we de-

fine an algebraic operation on sensor data that we call ag-
gregation. Consider two sensors that have collected data
about an event at times r and s. Let X(r) and Y (s) be,
respectively, the values of the information collected by the
two sensors. At some later time t, the two sensors decide
to integrate their information. We refer to this operation as
aggregation and denote the result by X(t)♦Y (t) where ♦ is
an application-dependent operator. Natural instances of ♦
include +, max, min, XOR, OR, among many similar ones.

5.1 Basics of Aggregation
Observe that since t ≥ r and t ≥ s, what is being aggre-

gated at time t are the discounted values X(r)δ(t − r) and
Y (s)δ(t− s). Thus, we write

X(t)♦Y (t) = [X(r)δ(t− r)]♦ [Y (s)δ(t− s)] . (9)

To conform to our empirical experience, the aggregation op-
erator ♦ is assumed to have the following fundamental prop-
erties:

Commutativity: X(t)♦Y (t) = Y (t)♦X(t) for all X(t)
and Y (t). The result of the aggregation does not de-
pend on the order in which the values are aggregated.

Associativity: [X(t)♦Y (t)]♦Z(t) = X(t)♦ [Y (t)♦Z(t)]
for all X(t), Y (t), Z(t). If several values are aggre-
gated in groups, the value of the aggregated informa-
tion does not depend on the order in which groups
are formed. It is customary to write X(t)♦Y (t)♦Z(t)
instead of the cumbersome parenthesized expressions.
More generally, we shall write ♦n

i=1Xi(t) instead of
X1(t)♦X2(t)♦ · · ·♦Xn(t).

Idempotency: If Y (t) = 0 then X(t)♦Y (t) = X(t). Ag-
gregation with information of value 0 has no effect.
This is the view we take in this paper. We note how-
ever, that the Idempotency law may be extended to
read X(t)♦Y (t) = X(t) whenever Y (t) ≤ X(t), mir-
roring our intuitive idea that one does not stand to
gain by aggregating with information of lesser value.

It is clear that the aggregation operator induces an abelian
semi-group structure on the set of non-negative reals.

In order to be able to understand how time discounting af-
fects aggregated values we shall find it convenient to assume
that the discount function δ distributes over ♦.

Distributivity: For all t, τ with 0 ≤ t ≤ τ , we can write
[X(t)♦Y (t)] δ(τ − t) = [X(t)δ(τ − t)]♦ [Y (t)δ(τ − t)].
The discounted value at time τ − t of the information
X(t)♦Y (t) aggregated at time t matches the aggre-
gated value at time τ of X(t)δ(τ − t) and Y (t)δ(τ − t).
In other words, it does not matter whether we first ag-
gregate and then discount the aggregated information
or vice versa.

The following result is a direct consequence of Lemma 4.1
and of the distributivity property.

Lemma 5.1. For all 0 ≤ r ≤ s ≤ t ≤ τ , we have

[X(t)♦Y (t)] δ(τ − t) = [X(r)δ(τ − r)]♦ [Y (s)δ(τ − s)] .
(10)

Proof. By using distributivity we write

[X(t)♦Y (t)] δ(τ − t)

= [X(r)δ(t− r)♦Y (s)δ(t− s)] δ(τ − t) [by (2)]

= [X(r)δ(t− r)δ(τ − t)]♦ [Y (s)δ(t− s)δ(τ − t)]

= X(r)δ(τ − r)♦Y (s)δ(τ − s) [by Lemma 4.1]

The left-hand side of (10) is the discounted value ofX(t)♦Y (t)
at time τ , while the right-hand is the aggregated value of the
discounted values of X(r) and Y (s) at time τ .



5.2 Discounted Value of Aggregated Informa-
tion

Consider an event witnessed by n, (n ≥ 2), sensors and let
the sensed values be X1, X2, · · · , Xn, collected, respectively,
at times t1, t2, · · · , tn. Assume, further, that various groups
of sensors have aggregated their information before time t
and that, finally, at time t the aggregation has been com-
pleted. We are interested in evaluating the time-discounted
value of the information collected by the sensors at time t,
where t ≥ max{t1, t2, · · · , tn}.

Theorem 5.2. The discounted value V (t) of the aggregated
information at time t is

V (t) = ♦n
i=1Xi(ti)δ(t− ti), (11)

regardless of the order in which the values were aggregated.

Proof. The proof is by induction on n. For n = 2, the
conclusion follows at once from Lemma 5.1. Now, let n ≥ 2,
be arbitrary and assume the statement true for all m, (m <

n). We assume, without loss of generality, that the last
aggregation takes place at time t. This aggregation must
have involved a number of disjoint groups G1, G2, . . . , Gp

each of them the result of a previous aggregation at times,
respectively, u1, u2, . . . , up. Observe that we can always
relabel the groups in such a way that their aggregation times
are ordered as u1 < u2 < · · · < up.

Let us look at group Gk. By the induction hypothesis,
the value of information in group Gk aggregated at time uk

was

V (uk) = ♦
nk
j=1Xkj

δ(uk − tkj
)

where, of course, we assume that group Gk involves nk sen-
sors whose values were aggregated.

Assuming t ≥ uk, the discounted value of V (uk) at time
t is

Vk(t) =
[

♦
nk
j=1Xkj

δ(uk − tkj
)
]

δ(t− uk)

= ♦
nk
j=1Xkj

δ(uk − tkj
)δ(t− uk) [by distributivity]

= ♦
nk
j=1Xkj

δ(t− tkj
) [by Lemma 4.1].

which is exactly the discounted value of information col-
lected by sensors in group Gk, had it been aggregated at
time t. Since Gk was arbitrary, the conclusion follows.

Theorem 5.2, in effect, says that the order in which the
values are aggregated does not matter as long as each is
aggregated only once. In practical terms, Theorem 5.2 gives
the algorithm designer the freedom to schedule aggregation
in a random manner, much in line with the stochastic nature
of wireless communication and sensor data aggregation.

6. LET’S PUT THIS TO WORK
The main goal of this section is to show how the theoret-

ical concepts developed in the previous sections apply to a
practically relevant scenario.

Consider a fire event witnessed by a number of sensors
deployed in a given area. For simplicity, assume that each
sensor has collected a temperature value. Let X1, X2, · · · be,
respectively, be the sensed temperature values collected by
the various sensors at times t1, t2, · · ·. Since the sensors have
witnessed the same event, it is natural to assume that the

random variables X1, X2, · · · come from the same underlying
distribution X with finite expectation E[X] <∞.
We do not assume that Xis are independent. And with

good reason: because of their proximity to the fire and of
the fact that the collected data pertain to the same event,
they are likely highly correlated. However, we assume that
the Xis are independent of the times t1, t2, · · ·
For a generic sensor that has collected data at time ti, we

let Xi(ti) denote the value of this information when it was
collected. By (4.12) the discounted value of this information
at a later time t is

Xi(t) = Xi(ti)e
−µ(t−ti). (12)

To make information aggregation as efficient as possible,
and to minimize collisions of irrelevant packets, we mandate
the sensors whose collected temperature reading is between,
say, 70◦C and 150◦C to attempt to aggregate their readings
with those of other sensors. The other sensors will not par-
ticipate in aggregation. This strategy is justified by the fact
that temperatures less than 70◦C may not be indicative of
fire.

Further, as a QoS parameter intended to avoid reporting
a false positive, we need a minimum of k individual temper-
atures to be aggregated. Given an expected temperature re-
ported of 100◦C, this requirement is tantamount to insisting
on accumulating a total of ∆ = k×100 “temperature point”
as a result of aggregation. In turn, this suggests ♦ = “ + ”
as a suitable aggregation operation.

In this context, we are interested in evaluating the ex-
pected time-discounted value, V (t), at time t, of the infor-
mation collected by the sensors where t ≥ max{t1, t2, · · ·}.
To answer this natural question we make the simplifying as-
sumption that t1, t2, · · · are the times of a Poisson process
with parameter λ > 0. In other words, λ is the rate at which
the sensors that witnessed an event are ready to report their
sensory data. For simplicity, we assume that, in fact, all the
sensors have detected data in the desired reporting range.
The general case, where a random subset of the sensors have
data in the reporting range, will be dealt with in the journal
version of this work.

Theorem 6.1. The expected time-discounted value, E[V(t)],
of the information collected by sensors at times t1, t2, · · · is

E[V (t)] =
λ

µ
E[X]

[

1− e
−µt

]

(13)

where λ > 0 is the rate at which the sensors collect their
data and E[X] is the common expectation of X1, X2, . . . .

Proof. Assume that the sensors collect their data at the
times of a Poisson process with parameter λ. By the Law of
Total Expectation,

E[V (t)] =
∑

n≥1

E[V (t)|{N = n}]P [{N = n}] (14)

where N is the random variable that counts the number of
sensors that have data ready for aggregation by time t. By
(12), Theorem 4.4 the conditional expectation, E[V (t)|N = n],
can be written as

E[V (t)|{N = n}] = E[
N
∑

i=1

Xi(ti)e
−µ(t−ti)|{N = n}]

=
n
∑

i=1

E[Xi(ti)e
−µ(t−ti)]



It is well known that, given that n Poisson events were
recorded in (0, t], their conditional distribution is uniform.
Thus,

E[V (t)|{N = n}]

=
n
∑

i=1

E[Xi(ti)e
−µ(t−ti)]

=
n
∑

i=1

E[Xi(ti)e
−µ(t−Ui)]

[where the Uis are uniform in (0, t]]

=
n
∑

i=1

E[Xi(ti)]E[e−µ(t−Ui)]

[because the Xis and Uis are independent]

=
n
∑

i=1

E[X]E[e−µ(t−Ui)]

[recall, X is the common distribution of the Xis]

= E[X]e−µt

n
∑

i=1

E[eµ(Ui)]

= e
−µt

E[X]
n
∑

i=1

∫ t

0

e
µu du

t
= e

−µt
E[X]

n
∑

i=1

eµt − 1

µt

=
E[X]

µt

n
∑

i=1

[1− e
−µt] (15)

=
nE[X]

µt
[1− e

−µt]. (16)

On plugging (15) back into (14), we obtain

E[V (t)] =
∑

n≥1

nE[X]

µt
[1− e

−µt]P [{N = n}]

=
∑

n≥1

nE[X]

µt
[1− e

−µt]
(λt)n

n!
e
−λt

=
e−λtE[X][1− e−µt]

µt

∑

n≥1

(λt)(n−1)

(n− 1)!

=
e−λtE[X][1− e−µt]λt

µt
e
λt

=
λ

µ
E[X][1− e

−µt].

There are a number of interesting things to note here:

• The actual distribution of the Xis does not appear
explicitly in Theorem 6.1. This is telling us that two
quite different distributions with the same expectation
are equivalent as far as Theorem 6.1 is concerned;

• E[V (t)] = λ
µ
E[X][1−e−µt] is an increasing function of

time and

lim
t→∞

E[V (t)] =
λ

µ
E[X].

Thus, for every application-dependent threshold ∆,
there exists an earliest time when, for the first time,
∆ is exceeded.

Note that, as mentioned above, Theorem 6.1 allows us
to evaluate the earliest time t at which the expected dis-
counted value of the information collected by the sensors
exceed an application-dependent threshold ∆. Thus, at time
t, E[V (t)] ≥ ∆, or equivalently,

λ

µ
E[X][1− e

−µt] ≥ ∆.

Solving for t, we obtain

t ≥
1

µ
ln

λE[X]

λE[X]−∆µ
(17)

In fact, (17) states that a value of t exists only if λE[X] >
∆µ or, equivalently,

∆ <
λ

µ
E[X]. (18)

Observe that in practice it is the case that E[X] < ∆, for
otherwise there are no incentives for aggregation.

7. SIMULATION RESULTS
In this section, we evaluate our theoretical model through

simulation.

7.1 Discounted Value of Information
As a simple example, assume that the sensors are moni-

toring temperature to detect fire. The sensors report their
sensed temperature over time, modeled as a uniform random
variable from R[30, 150]◦C. For simplicity, temperature val-
ues are used as the value of information, and as discussed in
Section 6, we use ♦ = “+ ” as the aggregation function. In
our scenario, an alarm is generated if the value of aggregated
information for temperatures above 70◦C exceeds 400. The
value of information degraded exponentially with parameter
µ = 5× 10−3.

Figure 1 shows the value of the discounted information
over time (as described in Section 4). Each jump indicates
an aggregation operation, increasing the value of the infor-
mation. Then, the value decreases as time goes by until the
next aggregation operation. This behavior repeats until the
total value of the aggregated information exceeds 400. The
increase in the value of information could also cease if there
are no sensors left to report new information. After this
point in time, the value of aggregated information decreases
over time.

7.2 Effect of Aggregation Method
In this section, we simulate a scenario in which the sen-

sors collect information and report it to a central node. We
want to evaluate the effect of wireless communication and
aggregation methods on the average time to aggregate. Col-
lisions in the wireless channel typically garble messages be-
yond recognition. Thus messages need to be retransmitted
which will increase the time to receive all pieces of infor-
mation to be aggregated. Clearly, the denser the traffic the
more collisions and the more retransmissions causing delays
in aggregation. A non-negligible side-effect of all this is that
due to collision-caused time delays, the value of individual
pieces of information decays and what is being aggregated
has lesser value.

Furthermore, the aggregation method could affect the time
to achieve the defined aggregation. This latency is due, to a
large extent, to the logic behind the transfer of information
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Figure 3: Percentage of value of information loss

over time for several exponential decay functions

achieve the value of information as soon as possible, so that
a decision maker can make a proper determination.

7.3 Time to Exceed a Threshold
Here, we evaluate the applicability of the defined thresh-

old time in (17). Recall that (17) shows the minimum time
at which the expected value of information will exceed the
threshold. This can be useful, for example, to plan for cap-
turing an intruder. If we assume that an intruder staying
time in the monitored area is an exponential random vari-
able S with expected value E[S] <∞ and the reaction time
of the security personnel to arrive at location after receiv-
ing the alarm is a random variable R with expected value
E[R], then the expected detection time D can be written as
D ≤ E[S]−E[R]. In other words, the design of λ, i.e., sen-
sor reporting periods, should not let t in (17) exceed D. In
the following, we simulate this scenario to show how λ and
µ can affect the effectiveness of the monitoring application.
Assume that E[S] = 300s and E[R] = 100s. This means
that the detection time should be less than 200 seconds. In
this simulation, we assume that V is selected uniformly from
R[Vmin, Vmax], which are set to 0 and 100, respectively. This
can be a valid setting since it could mean a direct functional
mapping from the percentage of confidence that a sensor has
in detecting the intruder. Then, we could set the threshold
∆ to 196, which means that we need to have a confidence
equal to two 98% confidence in detection of intrusion before
reporting. Letting V oI(t) stand for the random variable that
measures the value of information at time t, Table 2 shows
the moments in time when the expected value, E[V oI(t)],
of V oI(t) will be above ∆ for theory and simulation. We
show the average time over 10,000 trials for various values
of λ and µ.

As it turns out, the simulation results match the theoret-
ical predictions well. In our defined scenario, we required
that E[V oI(t)] exceed ∆ within 200 seconds. Table 2 shows
that only configurations 5 and 6 meet that requirement, due
to the arrival rate of 0.1, which has sensors reporting every
10 seconds.

Table 2: Time when E[V oI(t)] exceeds a threshold

Config λ µ Theory Simulation

1 0.01 2.50× 10−3 1475 s 1700 s

2 0.01 1.25× 10−3 534 s 557 s

3 0.02 2.50× 10−3 267 s 280 s

4 0.02 1.25× 10−3 223 s 247 s

5 0.10 2.50× 10−3 41 s 47 s

6 0.10 1.25× 10−3 40 s 46 s

8. CONCLUDING REMARKS AND DIREC-

TIONS FOR FUTURE WORK
This paper provided a formal way of looking at the aggre-

gation processes in networks where individual actors possess
information whose value decays over time. We offered a for-
mal model for the valuation of time-discounted information
and of the algebra of its aggregation. We allow aggregation
of time-discounted information to proceed in an arbitrary,
not necessarily pairwise, manner. We have shown that the
resulting value of the aggregate does not depend on the or-
der in which aggregation of individual values takes place.
Our results suggest natural thresholding strategies for the
aggregation of the information collected by sets of network
actors. Our theoretical predictions were confirmed by ex-
tensive simulation.

In spite of these results, a number of problems are open
and are getting attention. First, it would be natural to
model the aggregation as a renewal-reward process where
each aggregation brings a certain “reward”, specifically, an
increase in the value of the corporate information stored by
the sensor network. In order for this to yield meaningful
results, we need a reasonable model for the distribution of
the rewards. While this is highly application-dependent, we
feel that a result in the spirit of Theorem 6.1 is possible.

Also, it would be of great theoretical interest to consider
other time discounting regimens that do not conform (and
are not amenable) to (2). Examples of such discount regi-
mens are known to exist, step functions being a prime ex-
ample. The question that we are addressing at the moment
is that of approximating a step function and, indeed, other
similar decay functions by polynomials. It is a classic re-
sult of Weierstrass’s classic approximation theorem [3] that
every real function can be approximated by a suitable se-
quence of polynomials. Since we have a good understanding
of exponential decay functions and since every exponential
can be approximated by a polynomial consisting of the first
few terms in its Taylor expansion, this approach seems to
be natural.

While a lot of attention had been devoted to detecting
and mitigating the effects of collisions on the wireless chan-
nel, to the best of our knowledge, the effects of collisions
on the value of information to be aggregated has not been
addressed in the literature. As our simulations showed, due
to the significant retransmission delays, the value of the in-
formation may be dramatically impacted.

Finally, it is of great practical interest to be able to retask
the sensors as the mission dynamics evolve. Retasking may
involve moving form one set of sensed attributes to another
and also inferring an attribute for which the sensor does not
have a direct sensing capability. This promises to be an
exiting area of work.
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