Autonomous Transport Protocol
Tamer Elsayed, Mohamed Hussein, Moustafa Youssef, Tamer Nadeem, Adel Youssef and Liviu Iftode

Basics
What is ATP?
- Autonomous Transport Protocol
- Why autonomous?
 - Decoupled from physical network
 - Decoupled from the physical location of application endpoints
- Provides reliable communication between mobile endpoints

Features I
- Application-specific naming
 - Connection endpoints are defined as contents in the P2P network
 - Dynamic endpoints relocation on different end hosts without disrupting the connection
- ATP is responsible for forwarding segments to the destination and acknowledgment to the source regardless of their current location

Features II
- Reliable transmission between users not end-hosts
- Data transfer by a combination of active and passive operations
- Established connections maintained independent of intermediate node availability
- TCP-like interface
 - Easy to write new ATP-aware applications
 - Current applications can be made ATP-aware with minor modification

System Architecture
- Mobile application state migration
- TCP-like interface
- Reliable transmission over IBM
- Transparent mobility
- Network of "contents"
 - Location-independent addressing
 - Communication infrastructure
 - DynaNet

Instance-Based Network (IBN)
- Content publishing
 - Reliability, latency
 - Content Communication
 - Active Contents
- Instance-based routing
 - Reliable routing for each content
 - Routes to specific instance

More Details
Naming Semantics
- IBM Content/Instance Addressing
- Contents are the communication endpoints
- Instances are agents working on behalf of mobile entities
- AS: Active ATP agent for the source S with index
 - PSA: Passive ATP agent for the source S with index
- Index means the agent is responsible for sending packets starting from sequence number

Active/Passive Agents
- Active Agent: pushes packets to the destination
- Passive Agent: waits until packets are pulled from it
- Advantages:
 - Resource Management: active agents may push on demand for resource limitations
 - Performance: passive agents may push on demand for better performance
- Policy
 - Based on network resources: buffer length, CPU load, available bandwidth, remaining energy
 - Local (agent decision) or global (cooperative)
- Challenges
 - Who, when, and how to take the switching decision

Source Migration Scenario
- IBM Content/Instance Addressing
- Contents are the communication endpoints
- Instances are agents working on behalf of mobile entities
- AS: Active ATP agent for the source S with index
 - PSA: Passive ATP agent for the source S with index
- Index means the agent is responsible for sending packets starting from sequence number

Destination Migration Scenario
- IBM Content/Instance Addressing
- Contents are the communication endpoints
- Instances are agents working on behalf of mobile entities
- AS: Active ATP agent for the source S with index
 - PSA: Passive ATP agent for the source S with index
- Index means the agent is responsible for sending packets starting from sequence number

Applications
- User Mobility
- Tracking in Sensor Networks

Discussion
Design Issues
- Reclaiming Network Resources
 - Enhancing a delivery or using a load-sharing mechanism for publishing in the IBN
 - Address management mechanism
 - Congestion in Range Area
- Fault tolerance
 - Rely on IBN route discovery service and/or on ATP mechanisms to tolerate the node failure and the failure problem
- Security
 - How to handle privacy, authenticity, and trust?
- End-to-End Semantics
 - Devises the burden of retransmitting from the source endpoint which allows the source to terminate earlier

Related Work
- TCP over Mobile IP
 - TCP Connection Migration
 - ETCP
 - E3
 - Mobile Tapestry
- Limitations
 - User is bound to a single host during connection lifetime
 - Communication endpoints must exist simultaneously

Current Status
- Implemented a Java prototype of the ATP protocol over P2P
- The prototype is deployed over a set of independent nodes at University of Maryland
- A simple ATP-aware application runs on each node of the network
- Simulation in progress