1. Suppose we wish to compute the modified Fibonacci numbers $F_0 = 0$, $F_1 = 1$, $F_2 = 1$, and $F_{i+1} = F_i + F_{i-2}$, for $i \geq 2$.

Write down an iterative algorithm to compute F_n; your algorithm should store only the fewest number of function values F_j needed to compute each intermediate value F_{i+1}. How many operations does your algorithm require? Count each statement executed in the loop body as an operation. (The answer should be precise, not a big Oh estimate.)

2. Use the Euclidean algorithm to compute

(a) gcd(279, 123);
(b) gcd 111, 81.

3. Give a recursive definition of the sequence $\{a_n\}$: (i.e., express a_n in terms of some of the earlier terms $a_{n-1}, a_{n-2}, \ldots, a_1$.)

(a) $a_n = n^2$
(b) $a_n = n^2 + n$

4. Consider the set of strings S on the alphabet $\{0, 1\}$ defined by the rules:
 (1) $\lambda \in S$; (λ is the empty string)
 (2) if $w \in S$, then $0w0 \in S$ and $1w1 \in S$.

Describe the strings included in S. (It is not sufficient to list some of the strings in S; you must specify a property that strings in S possess.)