CS 281
Prof. Alex Pothen

Webbook:
www.cs.odu.edu/~webbook
www.cs.odu.edu/~pothen/Courses/CS281

MIDTERM 2 on Wed, Nov 18
Mon Nov 9, 1998
Lecture 20
6.1, 6.2 Relations
6.4 Operations on Relations
Next Lecture: 6.5 Equivalence Relations
6.6 Partial Orders
Cartesian Product

• Given two sets S, T, the Cartesian product $S \times T$ is the set of all pairs (s, t), where $s \in S$ and $t \in T$.

\[S \times T = \{(s, t) : s \in S, t \in T\} \]

E.g., S is a set of students, T is a set of courses. $S \times T$ represents the set of all possible course enrollments.

• A binary relation R is a subset of the pairs in $S \times T$. If $(s, t) \in R$, we write sRt: s is related to t.

• Let $A = \{1, 2\}$, and $B = \{1, 2, 3\}$. Then a relation R is

\[R = \{(1, 1), (1, 2), (2, 3)\} \]

• Represent relations pictorially by (bipartite) graphs, or tables.
Binary Relations

- A relation from a set A to A is called a relation on A.

- A directed graph representation: each element of A is a vertex; an edge (a, b) joins two vertices a, b when aRb.

- E.g., the divisor relation.

- Let U be a set, and consider the powerset of U, i.e., the collection of all subsets of U. Let A, B denote any two subsets of U, and define a relation R consisting of the pairs (A, B), where $A \subseteq B$. This is a relation on the powerset of U: the \subseteq_U relation.
Properties of Relations I

Reflexive Relations

- A relation R on a set A is reflexive if (a,a) belongs to R for every element $a \in A$.

- Let \mathbb{Z} be the set of integers. Then $'$ \(\leq\)' and $'$ \(\geq\)' are reflexive relations on \mathbb{Z}. But $'$ \(<\)' and $'$ \(>\)' are not reflexive.

- In the directed graph of the relation R, there is a directed edge from a vertex a to a: this is a “loop”.

- The relation \subseteq_U is reflexive since $S \subseteq S$ for every set $S \subseteq U$. But \subseteq_U is not reflexive since $A \not\subseteq A$ for any set A.
Properties of Relations II
Symmetric Relations

- A relation R on a set A is symmetric if a is related to b, then b is related to a, for every pair $a, b \in A$.

- Let Z be the set of integers. Then $' \neq'$ is a symmetric relation on Z.

- In the directed graph of R, if there is a directed edge from a to b, then there is a directed edge from b to a as well, in a symmetric relation.
Properties of Relations III
Symmetric Relations II

• The inverse of a relation \(R = \{(a, b) : aRb\} \) is
 \[
 R^{-1} = \{(b, a) : (a, b) \in R\}.
 \]
The inverse of ' <' is '>'; that of ' <=' is '>='.

• The inverse relation \(R^{-1} \) is obtained by reversing the direction of every edge in the graph of \(R \).

• A symmetric relation \(R \) is equal to its inverse \(R^{-1} \).
Properties of Relations IV
Antisymmetric Relations

- A relation R on a set A is antisymmetric if at most one of aRb or bRa is true for $a \neq b$.

- The relations ' \leq', ' \geq', ' $<$', ' $>$' are all antisymmetric. The subset relation \subseteq_U is antisymmetric.

- In the directed graph of R, for distinct vertices a and b, at most one of the edges (a, b) or (b, a) can be present. The loop (a, a) may or may not be present.
Properties of Relations V
Transitive Relations

- A relation R on a set A is transitive if whenever aRb and bRc are true, then aRc is also true, for all triples a, b, c in A. Note that a, b, and c need not be distinct.

- Let Z be the set of integers. Then '$<$' is a transitive relation on Z. The '\neq' relation on Z is NOT transitive.

- In the directed graph corresponding to R, if directed edges (a, b) and (b, c) are present, then the directed edge (a, c) should exist. If there is a directed path from a to some vertex v in the graph, then there should be an edge (a, v).
Properties of Relations VI

- **Four definitions**
 - **transitivity:** if aRb and $b Rc$, then aRc.
 - **reflexivity:** aRa for every $a \in A$.
 - **symmetry:** if aRb then bRa.
 - **antisymmetry:** for $a \neq b$, at most one of aRb or bRa is true.

- **These definitions should hold for every element in the set A.** If there is one element $a \in A$ for which aRa is false, then the relation is not reflexive.

- **Transitivity:** For a given triple a, b, c, the condition given above is (trivially) true whenever a is not related to b, or b is not related to a.

- **Let A be a nonempty set.** Then which of these properties does the empty relation on A satisfy?
Operations on Relations

- Suppose we are given two relations $R : A \rightarrow B$, and $S : A \rightarrow B$ (from a set A to a set B).

- Since these relations are subsets of the Cartesian product $A \times B$, we can combine them using set operations.

- Thus we can define new relations: $R \cup S$, $R \cap S$, $R \setminus S$, etc.
Composite Relations

• Suppose we are given two relations $R : A \to B$, and $S : B \to C$.

• The composite relation $S \circ R$ consists of ordered pairs
 \[
 \{(a, c) : \text{there is some } b \in B \text{ such that } (a, b) \in R, \text{ and } (b, c) \in S\}.
 \]

• If R is a relation on a set A, then the relation R^2 on A is $R \circ R$.
 In the directed graph of R, we add edges (a_1, a_2) if there is a path of length two between a_1 and a_2.

• Similarly, we can define the relations $R^n = R^{n-1} \circ R$, for $n = 2, 3, \ldots$.
 In the directed graph of R, we add edges (a_1, a_2) if there is a path of length n between a_1 and a_2.
Closures of Relations

- Let R be a relation on a set A. The reflexive closure of R is the relation $S = R \cup \Delta$, where $\Delta = \{(a, a) : a \in A\}$.

- The reflexive closure S
 1. is reflexive, and
 2. contains every other reflexive relation that contains R.

- Reflexive closure of '$<$' on the integers is '\leq'.

- Closure: take a relation and add as few pairs as possible to it to satisfy some property.
Symmetric Closure

- Let R be a relation on a set A. Its symmetric closure is $S = R \cup R^{-1}$, where R^{-1} is the inverse relation

 $$\{(b, a) : (a, b) \in R\}.$$

- In the graph, we add the reverse edge (b, a) to S for every edge $(a, b) \in R$.

- Transitive closure of R is the relation S, where we add an edge (a, v) to S if there is a path from a to v in the graph of R.

- This is also the relation

 $$S = \bigcup_{i=1}^{\infty} R^i.$$
A relation \(R \) on a set \(A \) is an equivalence relation if it is reflexive, symmetric, and transitive.

Consider a set of cities of the world: two cities are related if they are connected by a road system. This is an equivalence relation.

Let the relation \(R \) on the set of integers consist of pairs \((a, b)\) if \(a \) and \(b \) leave the same remainder when divided by 2. This is an equivalence relation.

The set of all elements related to \(a \in A \) is the equivalence class of \(A \), and is denoted \([a]_R\). In the example, the equivalence classes are: \([0]_R\), the even numbers, and \([1]_R\), the odd numbers.