CS 281
Prof. Alex Pothen
Webbook:
www.cs.odu.edu/~webbook
www.cs.odu.edu/~pothen/Courses/CS281
CLASS NOW IN CONSTANT 120
Wed Oct 21, 1998
Lecture 15
Sec. 3.2 Induction, Sec 3.5
Program Correctness
Next Lecture: Sec 3.4 Recursive Algorithms
Correctness of Programs

• To prove that a program segment S does what it is intended to do, we need:
 an initial assertion p, true of the input;
 a final assertion q, true of the output.

• Hoare triple: $p \{S\} q$
 If p is true for the input, and the program S terminates, then q is true for the output.
Loop Invariants

• A technique for showing that a loop does what it is claimed to do.

• A loop invariant is a statement S that is true each time we begin to execute the loop. We prove that S is true by induction on the loop index (or some variable related to the loop index).

• Find the loop invariant by considering what happens as the loop is executed a few times.

• For loops terminate when the loop index becomes greater than the final value. We need to show that while loops terminate.
Multiplication

Consider the problem of multiplying two positive integers m, and n. We can do this by adding m to itself n times:

$$m + m + m + \ldots + m.$$
n times

(1) $\text{index} := 0; \quad \text{product} := 0;$
(2) while $\text{index} < n$ do
(3) $\text{index} := \text{index} + 1;$
(4) $\text{product} := \text{product} + m;$
 od

Loop Invariant:
When index has the value k (in statement (2)), product contains the value $m \times k$.

Basis: $\text{index} = 0$: true since product is set to zero in (1).
Multiplication II

Ind. Hyp. Assume when $index = (k - 1)$ in statement (2), that $product$ contains the value $m \times (k - 1)$.

Ind. step: Show that when $index = k$ in statement (2), that $product$ contains $m \times k$.

At the beginning of the loop, $index = (k - 1)$. As a result of statement (3), $index$ is equal to k; by statement (4), $product$ is incremented by m. Hence the new value of $product$ is $m \times (k - 1) + m = m \times k$.

When $index$ is equal to n in statement (2), then the algorithm terminates with $product$ equal to $m \times n$.
Selection Sort Algorithm

procedure Selection sort

for $step := 1$ to $(n - 1)$ do
 \{ $A[1:step - 1]$ is sorted at begin. of this loop; \}
 \{ $A[1:step]$ is sorted at end of this loop. \}

 \{ 1. select smallest element in $A[step:n]$ \}
 small := step;
 for $index := step + 1$ to n do
 small := index;
 fi
 rof
 \{ 2. move this element to posn. of $A[step]$ \}
rof
end
Inner loop of Selection Sort

\{ Select smallest element in $A[step : n]$ \}
(1) \hspace{1em} small := step;
(2) \hspace{1em} for \hspace{1em} index := step + 1 \text{ to } n \hspace{1em} do
(3) \hspace{1em} \hspace{1em} if \hspace{1em} A[index] < A[small] \hspace{1em} then
(4) \hspace{1em} \hspace{1em} \hspace{1em} small := index;
(5) \hspace{1em} \hspace{1em} fi
rof

Loop Invariant:
When $index$ is set to k (in statement (2)),
small is the index of a smallest element in

Basis: \hspace{1em} index = step + 1. small is the index of $A[step]$ after statement (1).
Inner loop of Selection Sort II

Ind. Hyp.: Assume true for $step \leq index \leq (k-1)$, for $k \leq n$. Prove for $index = k$.

Ind. step: At the beginning of the loop, $index = k - 1$, and $small$ contains the index of a smallest element in $A[step : k-2]$. In statements (3) and (4), we compare $A[k-1]$ with $A[small]$ and replace $small$ with the index of the smaller of these two elements. After executing the loop, when $index$ is set to k in statement (2), $small$ contains the index of a smallest element in $A[step : k-1]$. When $index$ is incremented to $n+1$, then the for loop terminates with a smallest element in $A[step : n]$.
Selection Sort

(1) for \(step := 1 \) to \((n - 1)\) do
(2) \(small \) is index of a smallest element in \(A[step : n] \);
(3) swap \(A[small] \) with \(A[step] \);
end

Loop Invariant:
When \(step \) is set to \(k \) (in statement (1)),
(a). \(A[1 : k - 1] \) is in nondecreasing order;
(b). every element in \(A[k : n] \) is at least as big as \(A[k - 1] \).

Basis: \(step = 1 \): true since \(A[1 : 0] \) is empty.
Selection Sort II

Ind. Hyp. Assume when \(step = k - 1 \) in statement (1), that \(A[1 : k - 2] \) is sorted, and that every element in \(A[k - 1 : n] \) is at least as great as \(A[k - 2] \).
Selection Sort III

Ind. step: At the beginning of the loop, \(step = k \). As a result of statement(2), \(small \) contains the index of a smallest element in \(A[k : n] \). Statement (3) then stores the smallest element in \(A[k] \). Since this element was at least as big as \(A[k-1] \), we have that \(A[1 : k] \) is non-decreasing. Further, since \(A[k] \) now contains a smallest element in \(A[k : n] \), every element in \(A[k+1 : n] \) is at least as big as \(A[k] \). When \(step \) is incremented to \(n \), then the algorithm terminates with \(A[1 : n-1] \) sorted. But this implies that \(A[1 : n] \) is sorted as well.