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ABSTRACT

HTTP MAILBOX - ASYNCHRONOUS RESTFUL
COMMUNICATION

Sawood Alam
Old Dominion University, 2013
Director: Dr. Michael L. Nelson

Traditionally, general web services used only the GET and POST methods of

HTTP while several other HTTP methods like PUT, PATCH, and DELETE were

rarely utilized. Additionally, the Web was mainly navigated by humans using web

browsers and clicking on hyperlinks or submitting HTML forms. Clicking on a link

is always a GET request while HTML forms only allow GET and POST methods.

Recently, several web frameworks/libraries have started supporting RESTful web

services through APIs. To support HTTP methods other than GET and POST in

browsers, these frameworks have used hidden HTML form fields as a workaround

to convey the desired HTTP method to the server application. In such cases, the

web server is unaware of the intended HTTP method because it receives the request

as POST. Middleware between the web server and the application may override the

HTTP method based on special hidden form field values. Unavailability of the servers

is another factor that affects the communication. Because of the stateless and syn-

chronous nature of HTTP, a client must wait for the server to be available to perform

the task and respond to the request. Browser-based communication also suffers from

cross-origin restrictions for security reasons.

We describe HTTP Mailbox, a mechanism to enable RESTful HTTP commu-

nication in an asynchronous mode with a full range of HTTP methods otherwise

unavailable to standard clients and servers. HTTP Mailbox also allows for multicast

semantics via HTTP. We evaluate a reference implementation using ApacheBench

(a server stress testing tool) demonstrating high throughput (on 1,000 concurrent

requests) and a systemic error rate of 0.01%. Finally, we demonstrate our HTTP

Mailbox implementation in a human-assisted Web preservation application called

“Preserve Me!” and a visualization application called “Preserve Me! Viz”.
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CHAPTER 1

INTRODUCTION

Alice would like to keep track of her tasks and maintain a to-do list. She found

Bob’s shared, hosted task manager service. She created her initial tasks list (Table I)

and started working on the highest priority task. Once it was finished, she wanted to

mark that task as done. Hence, Alice made a Hypertext Transfer Protocol (HTTP)

PATCH request [1] to the specific task’s Uniform Resource Identifier (URI) on Bob’s

server to modify the task partially. PATCH is a method of HTTP that is used to

partially update an existing resource. Unfortunately the server was down so this

communication failed. Alice tried again after some time when the server was up but

received a 501 Not Implemented HTTP Response [2] from the server. Alice talks to

Bob regarding this issue and Bob replied that there is a non-RESTful way of doing

this on the task server (where REST stands for REpresentational State Transfer).

They wished there was an extra layer of indirection to provide a RESTful interface

to Bob’s server.

TABLE I
Alice’s Tasks

ID Description Priority Status
1 Write a paper. HIGH Pending
2 Go on vacation. LOW Pending

The HTTP Mailbox provides a layer of indirection. It allows sending any HTTP

message (request or response), encapsulated in the message body to a URI relative to

the HTTPMailbox service using an HTTP POST request. Resulting messages can be

retrieved by making an HTTP GET request to the HTTP Mailbox. Multiple HTTP

messages to the same recipient can be pipelined in a single HTTP POST request.

The HTTP Mailbox also provides multicast messaging capabilities, an enhancement

not possible using HTTP.

In past years, general web services used only the GET and POST methods of

HTTP while several other HTTP methods like PUT, PATCH, and DELETE were

rarely utilized. Until recently, the Web was mainly navigated by humans using web



2

browsers and clicking on hyperlinks or submitting HTML forms. Clicking on a link is

always a GET request while HTML forms only allow GET and POST methods [3, 4].

Recently, several web frameworks/libraries (like Ruby on Rails [5], CakePHP [6],

Django [7], and .NET [8]) have started supporting RESTful web services through an

Application Programming Interface (API). To support HTTP methods other than

GET and POST in browsers, these frameworks have used hidden HTML form fields

as a workaround to convey the desired HTTP method to the server application.

In such cases, the web server is unaware of the intended HTTP method because it

receives the request as POST. Middleware between the web server and the application

may override the HTTP method based on special hidden form field values. On one

hand, this unsupported method limitation is present only in HTML and not in Ajax.

On the other hand, Ajax requests suffer from cross-origin restrictions. JavaScript

has a security policy called the “same-origin” policy which restricts Ajax requests

from a web page from communicating with a domain other than the origin domain

of the web page. Support for Cross-Origin Resource Sharing (CORS) [9] is in the

working draft of XMLHttpRequest [10]. While modern web browsers have recently

started supporting cross-origin Ajax requests [11], this feature is not available in

older browsers. Also, CORS support is server dependent. The web server needs to

explicitly send specific headers in order to allow the browser to communicate with

the server using Ajax.

Unavailability of the servers is another factor that affects the communication.

Because of the stateless and synchronous nature of HTTP, a client must wait for the

server to be available to perform the task and respond to the request. By introducing

HTTP Mailbox as another layer of indirection, we can address these issues.

We describe the HTTP Mailbox, a mechanism to store HTTP messages (re-

quests/responses) and deliver them on demand. The HTTP Mailbox makes HTTP

communication asynchronous. It enables RESTful HTTP communication with the

full range of HTTP methods otherwise unavailable to standard clients and servers. It

enables cross-domain communication in Ajax with the help of standard CORS head-

ers. The HTTP Mailbox is a store and delivery protocol that allows retrieval of the

same message multiple times by any number of recipients on demand. It also provides

multicast semantics otherwise unavailable in standard HTTP communication.

We evaluate a reference implementation in Ruby using ApacheBench [12] (a server



3

stress testing tool). Our test demonstrates high throughput (on 1,000 concurrent re-

quests) and a systemic error rate of 0.01%. Finally, we demonstrate our HTTP

Mailbox implementation being utilized in a human-assisted Web preservation appli-

cation called “Preserve Me!”. We have also utilized our HTTP Mailbox to visualize

the graph of “Preserve Me!” in real time using an application called “Preserve Me!

Viz”.

Our contribution in this thesis can be summarized as follows.

• Enabling asynchronous communication in HTTP.

• Enabling CORS support in restricted environments.

• Enabling REST with full method support in all web servers.

• Enabling indirect and group communication in HTTP.

• Implementation of the HTTP Mailbox system.

• Benchmarking of our implementation.

• Quantitative and qualitative evaluation of the system.

• Brief description and evaluation of several related communication systems.

• Utilization of the HTTP Mailbox implementation in various applications.
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CHAPTER 2

BACKGROUND

The HTTP Mailbox is a store and on-demand delivery protocol for HTTP mes-

sages. It is inspired by the concept of shared memory in Linda [13] but implements

the concept using web semantics. It uses RESTful HTTP communication to trans-

port HTTP Messages between client/server and the HTTP Mailbox server.

2.1 LINDA

Linda [13] is a model based on generative communications [14] to facilitate dis-

tributed computing by sharing objects (e.g., data, computation requests and com-

putation results) called tuples in a shared virtual memory called tuplespace. Pro-

cesses query the tuplespace based on some criteria and perform a destructive or

non-destructive read. Once the result of the process is ready, it is written back to

the tuplespace where it can be picked up by another process. Linda is a pre-web

model from 1980s that works only for machines connected to a shared memory.

Linda provides a means for asynchronous (time-uncoupled) communication in

which the sender and recipient(s) do not need to meet in time. It also facilitates

space-uncoupling as the sender and the recipient(s) do not need to know the identities

of each other.

Linda implements CRUD with four basic operations or functions:

• “in” – a destructive read,

• “rd” – a non-destructive read,

• “out” – producing a tuple, and

• “eval” – creating a process to evaluate a tuple and producing a result tuple if

applicable.

Now, assume that a client application on Alice’s machine is communicating with

Bob’s task manager process via a shared tuplespace using the Linda model. To mark

the first task completed, Alice’s client may perform an “out” function to generate a

tuple in the tuplespace for processing by Bob’s service when available.
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out("task", 1, "Done")

This means create a tuple for task with id 1 to mark it done. This tuple will remain

in the tuplespace until Bob’s service (or any other process) performs a destructive

read using “in” function.

in("task", ?id, ?status)

This read query using the “in” function will match the Alice’s tuple of “task”,

assign “1” to “id” and “Done” to “status”, and remove it from the tuplespace.

Bob’s service then can create a live/active tuple using the “eval” function to

create a new process for marking the task with id 1 as done and update the tasks

table to reflect the changes permanently. Bob’s service may also wish to keep log of

the changes.

eval("log", 1, changeStatus("Done"))

In this case, output of the live tuple will result in a passive tuple after the “eval”

function is done, that can be stored in the tuplespace.

("log", 1, "Done")

This log tuple can be read using “rd” function several times without removing

it from the tuplespace by Alice’s client, Bob’s server, or any other entity that has

access to the tuplespace.

rd("log", ?id, ?status)

We took the simplicity of this model and implemented it for storing and for-

warding HTTP messages (requests and responses). Linda is a pre-web model mainly

designed to work in a distributed system (not as large as the Web) where trusted

processes share a common memory. Any process can write any tuple in the tu-

plespace independently and any process can destroy any tuple from the tuplespace.

To implement it on the open Web as a distributed system, we must consider the

scale of the Web and aspects of security and authenticity. Unlike a closed small

distributed system, the Web is not trusted. (See chapter 7 for discussion on attacks

and prevention.)
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2.2 REST

REpresentational State Transfer (REST) [15, 16] is a software architecture for

large-scale distributed systems which has emerged as the preeminent design pattern.

It utilizes existing HTTP methods to generalize the interfaces of a web service by

mapping resource actions like Create, Read, Update, and Delete (CRUD) [17] to

corresponding HTTP methods POST, GET, PUT, and DELETE respectively. Re-

mote Procedure Call (RPC) on the other hand encourages application designers to

define their own application specific methods and does not rely on HTTP methods

for CRUD. REST encourages the use of nouns in the URI instead of verbs and hides

the implementation details from the URI. Code 1 illustrates few RPC-style URIs

and their corresponding RESTful URIs. A typical implementation of RPC on the

Web is Simple Object Access Protocol (SOAP) [18] that allows querying available

procedures and associates arguments on a remote server. A client can then invoke

those procedures remotely using XML as the medium of exchange.

Code 1. RPC-Style vs. RESTful URIs

1 RPC > GET /list_all_tasks.php
2 REST > GET /tasks
3
4 RPC > GET /show_task_details.php?id=3
5 REST > GET /tasks/3
6
7 RPC > POST /create_new_task.php
8 REST > POST /tasks
9

10 RPC > POST /update_task_status.php
11 REST > PATCH /tasks/3
12
13 RPC > GET /delete_task.php?id=3
14 REST > DELETE /tasks/3

Code 2. RESTful Communication

1 > PATCH /tasks/1 HTTP/1.1
2 > Host: example.com
3 > Content-Type: text/task-patch
4 > Content-Length: 11
5 >
6 > Status=Done
7
8 < HTTP/1.1 200 OK
9 < Content-Type: text/task

10 < Content-Length: 28
11 <
12 < (Done) [HIGH] Write a paper.

If Bob’s tasks server on example.com was REST compliant, then after completing

the first task Alice could have made an HTTP PATCH request to the task URI to

mark it done as Code 2 Lines 1-6 and received the modified task resource in response
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as Code 2 Lines 8-12. It is not mandatory to return an entity body in the response to

a PATCH request, but in our example, we will assume that the server will send the

updated resource in the response. Media types text/task and text/task-patch

are not defined. They are used here for illustration purpose only.

Unfortunately, many web services are not fully REST compliant. Hence, a

PATCH request as in Code 2 (or other methods like PUT or DELETE) may cause

the server to respond with 501 Not Implemented or other failure responses. For ex-

ample, the default Apache [19] web server setup returns 405 Method Not Allowed

in response to a PUT request. Another issue is if Bob’s server is not available then

Alice has to wait and keep sending the request periodically until the service comes

back online and completes the request.

TABLE II
HTTP Method Support

Method LAMP HTML Ajax DMOZ

GET Default Support Link, Form Yes 100%

POST Default Support Form Yes 40.3%

PUT Extra Config. None Yes 1.7%

DELETE Extra Config. None Yes 1.8%

PATCH Extra Config. None Yes 1.3%

Table II lists common HTTP methods and their support in web browsers and

LAMP1 servers. It shows that Apache web server requires extra configuration in

order to support PUT, DELETE and PATCH methods. Also, pure HTML has no

interface to issue these methods from the browser except by using Ajax requests.

Table II also gives statistical distribution of support of various HTTP methods

on the live Web. This statistical distribution was calculated from 40,902 random

live URIs from DMOZ [20]. DMOZ is an Open Directory Project that maintains the

curated directory of World Wide Web URIs, currently listing over 5 million sites.

We have selected the only URIs that return 200 OK response on GET request out

of 100,000 initial set of URIs. Then we issued an OPTIONS request on those 40,902

live URIs to collect data about supported methods from the “Allow” response header

as illustrated in Code 3. Only 55% of live URIs responded to the OPTIONS request

1Linux, Apache, MySQL, and PHP, Perl or Python.



8

and only 1.16% URIs returned all the methods listed in Table II in their “Allow”

response header. It shows the limited utilization of HTTP methods other than GET

and POST on the web.

Code 3 illustrates four OPTIONS requests with different responses. First re-

quest returned 501 Not Implemented response, which means it does not recognise

OPTIONS method, although the URI associated with this request supports POST,

GET, HEAD, PUT, and DELETE methods (according to its documentation). Sec-

ond request does recognize the OPTIONS method, but returned 405 Not Allowed

response, hence we cannot query supported methods. Third request returned limited

method support (only GET and POST methods listed in Table II). Finally, fourth

request returned support for all the methods listed in Table II. We did not check to

see if the URIs respond to the methods returned in the “Allow” header.

Code 3. OPTIONS Request to Retrieve Allowed Methods

1 $ curl -I -X OPTIONS http://fluiddb.fluidinfo.com/about
2 HTTP/1.1 501 Not Implemented
3 Server: nginx/1.1.19
4 Date: Wed, 07 Aug 2013 21:09:15 GMT
5 Content-Type: text/html; charset=utf-8
6 Content-Length: 150
7 Connection: keep-alive
8 X-Fluiddb-Request-Id: API-9006-20130807-210915-18792385
9 X-Fluiddb-Error-Class: UnsupportedMethod

10
11 $ curl -I -X OPTIONS http://dev.bitly.com/
12 HTTP/1.1 405 Not Allowed
13 Content-Type: text/html
14 Date: Wed, 07 Aug 2013 22:24:05 GMT
15 Server: nginx
16 Content-Length: 166
17 Connection: keep-alive
18
19 $ curl -I -X OPTIONS http://www.cs.odu.edu/
20 HTTP/1.1 200 OK
21 Date: Wed, 07 Aug 2013 23:11:04 GMT
22 Server: Apache/2.2.17 (Unix) PHP/5.3.5 mod_ssl/2.2.17 OpenSSL/0.9.8q
23 Allow: GET,HEAD,POST,OPTIONS
24 Content-Length: 0
25 Content-Type: text/html
26
27 $ curl -I -X OPTIONS http://www.parasitesandvectors.com/
28 HTTP/1.1 200 OK
29 Set-Cookie: UUID=6818dd14-085e-4a50-806a-deab9b907585; Path=/
30 Allow: GET, HEAD, POST, PUT, DELETE, TRACE, OPTIONS, PATCH
31 Content-Type: text/html
32 X-Cacheable: NO
33 Server: BioMed Central Web Server 1.0
34 Content-Length: 0
35 Accept-Ranges: bytes
36 Date: Wed, 07 Aug 2013 23:02:22 GMT
37 Connection: keep-alive
38
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CHAPTER 3

RELATED WORK

Web messaging has various forms including store and forward, point-to-point,

peer-to-peer, and publish-subscribe. Based on these messaging forms there are

various communication protocols, tools and platforms like Email, Skype, Twitter,

NNTP [21], IRC [22], and XMPP [23]. Many of these were built to allow humans

to communicate with each other over the Internet. In contrast we are interested

in protocols that allow web objects to communicate easily with each other over the

Internet, preferably using HTTP. Here we will first describe cross-domain commu-

nication. Then we will discuss some techniques and protocols that were especially

built to enable communication among applications. Finally, we will evaluate if those

protocols can be used for web object communication.

3.1 CROSS-DOMAIN COMMUNICATION

When a web page from domain “A” is loaded in a web browser and commu-

nicates with another domain “B”, it is called cross-domain communication. Fig. 1

illustrates cross-domain communication. Cross-domain communication is not limited

to browser-based communication only, but when two servers from different domains

communicate with each other, they usually do not have cross-domain restrictions.

In browser-based cross-domain communication, embedded resources (like image,

CSS, JavaScript) and HTML Forms are generally allowed, but Ajax requests are

restricted by default. Also, a browser cannot enable cross-domain communication in

Ajax without the help of the remote server.

There are legitimate usage of cross-domain communication, for example, uti-

lizing Content Distribution Networks (CDN) or consuming third-party web service

APIs. There can be misuses of cross-domain communication, for example, consum-

ing unauthorized third-party web service APIs. There can also be some unwanted

implications of cross-domain communication, for example, sending browser cookies

containing user’s session information to a different domain. Luckily, web browsers

prevent cookies from being sent to a different domain for security reasons.
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Fig. 1. Cross-Domain Communication.

3.2 AJAX AND HTML FORMS

Ajax or an HTML form can be used to communicate to a web server from a

web browser that has a web page loaded in it. But both are limited in some ways

especially when communicating to a domain other than the origin of the currently

loaded web page.

Code 4. Cross-Origin Ajax Communication

1 var req = new XMLHttpRequest();
2 req.open("PATCH", "http://example.com/tasks/1", true);
3 req.setRequestHeader("Content-Type", "text/task-patch");
4 req.setRequestHeader("Origin", "example.org");
5 req.send("Status=Done");
6
7 ERROR: XMLHttpRequest cannot load http://example.com/tasks/1.
8 Origin http://example.org is not allowed by Access-Control-Allow-Origin.

Suppose that Alice has a web page loaded in her browser from her organization’s

website example.org and she tries to send a PATCH request to Bob’s task manager

service hosted on example.com domain to update the status of her first task. Also,

suppose that Bob’s server does not implement CORS headers. She may issue an Ajax

request as illustrated in Code 4 Lines 1-5. This request will not be completed because
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of the cross-origin restriction imposed by the JavaScript, and the web browser will

throw an error as illustrated in Code 4 Lines 7-8.

Alice can also try using an HTML form to make a cross-origin request but she

will have many issues. If Bob’s server has some protection against Cross-Site Re-

quest Forgery (CSRF) [24] her form submission may be rejected. CSRF is a type

of malicious exploit of a website whereby malicious requests are sent by a malicious

website on behalf of a user that the website trusts. Suppose that Bob’s server does

not protect against CSRF and Alice can submit HTML forms there. But the HTML

form will not allow her to set the Content-Type header to an arbitrary value like

text/task-patch. Another limitation of an HTML form is that it only supports

GET and POST HTTP methods. Suppose Bob’s server provides a non-standard

workaround for the later issues with the help of a pre-defined request parameter

“ method”. Now, Alice may add a form in her organization’s website as illustrated

in Code 5 and submit it to make a POST HTTP request to Bob’s server. If she

does not set the proper value to the “target” attribute of the form element, then the

browser will load the response from the URL as specified in the “action” attribute of

the form element and the currently loaded page will be lost. While she can open the

response in an iframe inside the current web page or in a new browser window/tab,

the origin web page will not be able to read the response.

Code 5. Cross-Origin HTML Form

1 <form method="post" action="http://example.com/tasks/1" target="_blank">
2 <input type="hidden" name="_method" value="patch">
3 <select name="status">
4 <option value="Done" selected="selected">Done</option>
5 <option value="Pending">Pending</option>
6 </select>
7 <input type="submit" value="Submit">
8 </form>

3.3 RELAY HTTP

The Relay HTTP draft specification [25] describes a way to overcome the CORS

restriction imposed by the JavaScript in Ajax requests. A proxy service is built on

the same domain to relay/replay HTTP requests between client and remote server.

It uses message/http and application/http MIME types defined for tunneling

HTTP traffic over HTTP [2]. It requires additional setup on the Web server to host

the proxy server.
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Suppose that Alice wants to add a tasks block in her organization’s website

example.org while still utilizing the services of Bob’s task manager hosted at

example.com. She will fail to GET data from or POST data to Bob’s server us-

ing Ajax, because of the cross-origin restriction posed by JavaScript. Modern Web

browsers which support CORS require additional headers from the server. But if

she does not have control of Bob’s server and if Bob’s server does not already sup-

port CORS, she will not be able to get the tasks data from Bob’s server. As a

workaround, she may add an iframe in her website and embed Bob’s tasks manager

web page but she will not have control of the design of the embedded web page. An

iframe is an inline HTML element that allows embedding other web pages in a frame

inside an HTML document. The primary HTML document can style the iframe ele-

ment in limited ways (e.g., border, margins and dimensions) but has no control over

the styling of the embedded document especially if the embedded document is from

another domain.

Fig. 2. Relay HTTP Cross-domain Communication.

Fig. 2 shows how a browser can overcome the cross-domain restriction imposed

by the JavaScript security model using Relay HTTP proxy. If a page from domain A

tries to access resources from domain B from within a browser window using Ajax, it

needs to tunnel the HTTP Request through a proxy server hosted under domain A.

The server of domain A can then relay that HTTP Request on the domain B server

and return the HTTP Response to the browser window.
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To overcome her client side restriction, Alice might set up a Relay HTTP proxy

server under her organization’s domain name (example.org) to delegate all cross-

origin requests to the proxy server to replay them on Bob’s server and get the response

as if it came from the same domain.

Using Relay HTTP, Alice makes a POST request which encapsulates the desired

PATCH request as an entity to the proxy service hosted under her organization’s

domain hence avoiding any client side limitations as illustrated in Code 6 Lines 1-11.

The proxy service then replays the encapsulated message/http entity Code 6 Lines

6-11 and forwards the response back to the client as Code 6 Lines 13-17. But Relay

HTTP still cannot solve the server side limitations. Also, it is a synchronous system,

hence the client, the relay/proxy server, and the remote server must all meet in time.

Code 6. Relay HTTP Communication

1 > POST /proxy/example.com HTTP/1.1
2 > Host: example.org
3 > Content-Type: message/http
4 > Content-Length: 108
5 >
6 > PATCH /tasks/1 HTTP/1.1
7 > Host: example.com
8 > Content-Type: text/task-patch
9 > Content-Length: 11

10 >
11 > Status=Done
12
13 < HTTP/1.1 200 OK
14 < Content-Type: text/task
15 < Content-Length: 28
16 <
17 < (Done) [HIGH] Write a paper.

3.4 ENTERPRISE MESSAGING SYSTEMS

An Enterprise Messaging System (EMS) is a platform-agnostic message queuing

system to allow computer systems to communicate asynchronously. It uses enterprise-

wide published standards and structured data to communicate semantic messages.

Apache Qpid [26] is an implementation of the platform agnostic Advanced Mes-

sage Queuing Protocol (AMQP) [27]. Java Message Service (JMS) [28] defines reliable

enterprise messaging standard. It is an integral part of the Java Platform, Enterprise

Edition (Java EE) [29]. These are examples of enterprise messaging systems that al-

low various modes of digital communication including point-to-point, peer-to-peer,

publish-subscribe, and other forms of individual and group messaging.

Code 7 illustrates a typical AMQP message that Alice will send to change the

status of her first task to “Done”. This message needs to be sent to an AMQP



14

Message Broker that will hold it as a persistent message and deliver it to the recipient

identified by “to” field as shown in Code 7 Lines 12-14.

Code 7. AMQP Message Example

1 <type name="header" class="composite" source="list" provides="section">
2 <descriptor name="amqp:header:list" code="0x00000000:0x00000070"/>
3 <field name="durable" type="boolean" default="true"/>
4 <field name="delivery-count" type="uint" default="0"/>
5 </type>
6 <type name="properties" class="composite" source="list" provides="section">
7 <descriptor name="amqp:properties:list" code="0x00000000:0x00000073"/>
8 <field name="message-id" type="string" requires="message-id">
9 a9168c52-26a2-43aa-b6a3-329ac39c1154

10 </field>
11 <field name="user-id" type="binary"/>
12 <field name="to" type="string" requires="address">
13 http://example.com/tasks/1
14 </field>
15 <field name="subject" type="string">
16 Change Task Status
17 </field>
18 <field name="content-type" type="symbol">text/task-patch</field>
19 <field name="creation-time" type="timestamp">1371606448</field>
20 </type>
21 <type name="amqp-value" class="restricted" source="*" provides="section">
22 <descriptor name="amqp:amqp-value:*" code="0x00000000:0x00000077"/>
23 Status=Done
24 </type>

JMS is limiting as it is only for Java applications, while Apache Qpid has servers

(also called Message Brokers) written in C++ and Java, along with clients for C++,

Java JMS, .Net, Python, and Ruby. However there is no easy way to interact with

these messaging services using a web browser. There are some plugins available

for RabbitMQ [30] (a message broker implementation for AMQP) that enable web

communication (e.g., RabbitMQ-Web-Stomp [31] that utilizes STOMP [32] protocol

and WebSockets [33] to enable browser-based interaction with RabbitMQ server).

3.5 SUMMARY

In this chapter we described cross-domain communication, then we discussed

various existing techniques and protocols to enable web object communication. An

HTML Form allows the user to make GET or POST requests only. Other HTTP

methods are not supported in HTML Form element. When an HTML form is sub-

mitted to a domain other than the origin domain, response data cannot be read

by the origin page. Ajax allows all the HTTP methods, but it is sever-dependent

when it comes to cross-domain communication. If the domain that is being con-

tacted is different from the origin, then the remote domain must explicitly return

specific headers in order to allow cross-domain communication. CORS support is

not enabled in the web servers by default. Relay HTTP solves the cross-domain

problem in Ajax requests, but it requires the origin domain to have the extra relay
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service running. None of these techniques allow time-uncoupling or group communi-

cation. EMS provides time-uncoupling and group communication, but it is an RPC

system and does not allow browser-to-server communication over HTTP. To enable

web browser-based HTTP communication in EMS, we need an extra HTTP endpoint

that communicates with the Message Broker and serves as an intermediate proxy.
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CHAPTER 4

PRELIMINARY WORK

We were working on a human-assisted decentralized Web preservation system

where we needed a messaging system to allow web objects to communicate with each

other. Our primary goal was to leverage existing freely available Web infrastructure

maintained by others while still keeping the system portable and independent of

the underlying services so that services can be switched easily. We were also trying

to allow interoperability among various instances of the preservation system irre-

spective of their chosen underlying communication system. We decided to develop

an abstraction layer of communication system that can utilize MediaWiki, Blogger,

Tumblr, Twitter, Gmail, Dropbox, and many other freely available content storage

services to store messages and expose a uniform API to send and retrieve messages.

We tried various possibilities and realized that none were able to function at our

desired level of scale. We tried the following:

• HTTP Communication

• Bleeps

• Micro-blogging (Tweet-like services)

• Decentralized Mailbox

4.1 HTTP COMMUNICATION

RESTful HTTP communication is a good choice to allow web objects to com-

municate with each other as it requires no special intermediate services to stablish

communication. Web objects can utilize the already established infrastructure of the

Internet to communicate. But HTTP has certain limitations as well. It requires

the client and server to meet in time in order to communicate. Many web services

do not support REST hence we cannot leverage various methods of HTTP. Group

messaging that we needed in our preservation system was also not possible in plain
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HTTP communication. It may also cause Denial of Service (DoS) attack for web

servers due to heavy HTTP communication load.

4.2 BLEEPS

To avoid the blocking nature of HTTP, we thought of having publish-subscribe

style push notification system so that once a client sends a message on behalf of a

web object to another web object hosted on a server, it may go on without worrying

about the delivery of the message. This system requires the recipients to be available

and listening to the push notification feed when there is any message for them. If

a recipient was not available or a message was dropped for some reason, it will lose

that message forever unless there is a message archiving service.

Bleeps is a live messaging system that is inspired by Twitter. It uses Push style

communication [34] to broadcast small messages called Bleeps using relay channels.

Anyone can subscribe to one or more such channels to receive live message feeds.

We first explored Bleeps for the ResourceSync project [35, 36]. The message used

in the Bleeps messaging system is called a Bleep. Bleeps supports Twitter-style

hashtags and mentions for discovery and searching. It can be configured to support

a variety of message formats for parsing message attributes easily using a language

identifier. Messages are pushed to various channels for broadcasting and can be

captured by consumer applications or other services. A Bleep message is intended

to be transported over Twitter (or like services) infrastructure, hence the length

cannot be more than 140 characters as this is the limit imposed by Twitter on the

maximum length of a tweet. Also, the message needs to be structured enough to

make the parsing easy according to the attached language descriptor.

from=alice to=http://example.com/tasks/1 change status #done @bob $task

In this example above, “$task” at the end of the message is the language descriptor

which defines the template for the message. Fields “from” and “to” can be used to

query the message store. Similarly, “#done” hashtag is there to help grouping the

messages with the same status. Bob is being mentioned with the help of “@bob”

which will cause the message to appear in Bob’s stream. The remaining free text is

the message which can also be a URL of a long message hosted elsewhere to keep

the size of the message small. The message format is completely up to the attached

language descriptor which can be defined by anyone.
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(a) Bleeper Stream Feed in a Browser

(b) Bleeper Stream Stored in Twitter

Fig. 3. Bleeper Stream: Live and Stored.
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We implemented a Bleeps server using a messaging system called Faye [37] that

uses the Bayeux protocol [38]. We called our implementation Bleeper. Bleeper had

various push notification channels including “Digital Object Communication”, “DB-

pedia Live”, and “News Feeds”. Fig. 3(a) shows a web application that is listening

to the Bleeper notifications over “Digital Object Communication” channel.

To make these Bleeps persistent, we stored them in Twitter as shown in Fig. 3(b).

We tried various encoding methods in the Bleeps messages to enable easy searching.

But Twitter has indexed only few initial messages then categorized our account as a

bot and removed it from search index.

4.3 MICRO-BLOGGING

To allow interoperability, we considered defining some standard but flexible mes-

sage formats which are compact in size and extensible to adopt any type of messages.

We utilized the message format used in Bleeps, which contains a language identifier

in the message itself that describes the template of the message for easy parsing. We

were able to fit most of the messages used in our web preservation application in very

small text strings (less than 140 characters) so we thought we could use Twitter as

the communication medium.

To use Twitter or like services, we designed and evaluated following three different

modes of operation.

• Hashtag Model

• Scribe Model

• Hashtag Model With Add-Ons

4.3.1 HASHTAG MODEL

Suppose that Alice and Bob are web objects and they are trying to communicate

using this hashtag-based Twitter communication model. Alice and Bob will chose

unique hashtags or their URIs that can identify them. If the URIs are long then a

Uniform Resource Locator (URL) shortening service (e.g., Bitly [39]) can be used,

otherwise Twitter will shorten the URL itself. The search capability of Twitter (or

like platforms) is utilized to facilitate asynchronous communication with multicast.
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Now if Alice wants to send a message to Bob, she will post a tweet utilizing

$docomm (a well-defined tweet format). Bob can search for $docomm messages in

which Bob’s identifier (i.e., hashtag or URI) has appeared as the recipient. Fig. 4

illustrates the work-flow of the hashtag model.

We have implemented this model using Twitter but could not succeed for more

than a few days. Twitter prunes its search index after 6 to 9 days. This means

the messages will be there but will not appear in the search results after a week of

posting. Also Twitter has identified our test accounts as bots and excluded them

from the search index. This exclusion made this model unusable as it relies on

the search capability. According to the Twitter search rules and restrictions [40]

they may automatically remove accounts from search or suspend it if they detect

some robotic activities like repeatedly posting duplicate or near duplicate content,

automated tweets, or posting similar messages over multiple accounts.

After facing restrictions imposed by Twitter we tried to implement this model

using StatusNet [41] software. StatusNet is an open source micro-blogging software

that can be installed on a web server as an alternative to Twitter. StatusNet allowed

us to increase the message length and keep the search index for long time. But the

search capabilities of StatusNet were limited as it does not allow expanded URL

search if the URI was shortened in the message.

4.3.2 SCRIBE MODEL

Scribe is a service that utilizes Twitter (or like platforms) to facilitate asyn-

chronous communication with multicast facility. It works similar to the hashtag

Fig. 4. Twitter-based Communication Using Hashtags or URIs.
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model but the sender and recipients do not communicate directly. The scribe service

processes the messages and sends alert messages to its subscribers. The scribe service

works as the trusted intermediate to allow safe communication among web objects.

Now if Alice wants to send a message to Bob, she will post a tweet using a Bleep

format and mention the accounts of one or more well-known scribe services in the

tweet. These scribe services watch for $docomm (a well-defined Bleep message for-

mat) messages in which they are mentioned. Alice will use the unique identifier

(hastag or URI) of Bob in the message as described in the $docomm format. Scribe

services perform filtering, spam cleaning, and other tasks on those tweets then post a

$docommalert (another well-defined Bleep format that contains reference to a corre-

sponding $docom message) messages using one of their several subordinate Twitter

accounts. They use multiple subordinate accounts (e.g., ScrOut1 and ScrOut2 as

illustrated in Fig. 5) to bypass the limits imposed by Twitter on number of tweets

Fig. 5. Twitter-based Communication Using Scribe Service.
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Fig. 6. Twitter-based Communication Using Hashtags and Add-on Services.

that an account can post in a certain period of time. All these accounts are then

aggregated together in a “Twitter List” that is followed by various web objects. If

a $docommalert corresponding to the $docomm message sent by Alice was posted

in the Twitter list that Bob follows then Bob can access Alice’s message using the

reference available in the $docommalert message. Fig. 5 illustrates the work-flow of

the scribe model.

We have faced similar issues from Twitter as in the case of hashtag model. While

this model facilitates centralized spam filtering, it creates a bottleneck. Failure of

the scribe service will cause the failure of communication among the web objects

subscribed to the scribe service.

4.3.3 HASHTAG MODEL WITH ADD-ONS

In this model, web objects are allowed to communicate using the hashtag model

but there are add-on scribe services that can perform spam filtering, message archiv-

ing, and indexing to provide search facility later when Twitter fails to search the

messages. Fig. 6 illustrates the work-flow of the this model.

These add-on services solve the problem of Twitter pruning the search index

periodically but these services rely on the search capability of the Twitter. If Twitter

has marked an account as bot or spam and does not index its tweets then add-on

services will not be able to discover them to process, index, and archive.
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(a) Latest Message for DO1

(b) Revision History of DO1’s Mailbox Page

Fig. 7. Wikia Page as the Mailbox for the Web Object DO1.

4.4 DECENTRALIZED MAILBOX

To have persistent storage of messages, we thought of having decentralized per-

sonal and group mailboxes for every web object chosen by web object owners inde-

pendently and advertising those mailboxes through the object’s ResourceMap [42].
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A ResourceMap is a file that describes a collection of resources known as an aggre-

gation (see appendix B for an example ResourceMap file). A web object owner may

choose Wiki, Blog, Micro-blog or virtually any web service that allows storage and

retrieval of text data.

We have implemented this using wikia.com which hosts MediaWiki instances for

public usage. We created individual Wiki pages for each web object that was working

as a mailbox for the associated web object. Anyone can rewrite the Wiki page (using

the Wiki API) with a message. To access all the messages written on that page one

can retrieve the history of that Wiki page (using the Wiki API). Fig. 7(a) shows a

Wikia-based mailbox page for a web object DO1, Fig. 7(b) shows the revision history

of the same page, and Code 22 in appendix B illustrates how to retrieve the revisions

of this page to consume them as messages. We realized that there were two major

challenges in this approach. The first challenge was the scale, as it was difficult to

create individual mailboxes for every ResourceMap. And the second challenge was

interoperability. There was no uniform interface which allows every web object to

communicate with a variety of mailboxes hosted on different public web services.

There was also a chance that these web services might detect robotic activities and

block the service.

4.5 SUMMARY

In this chapter we described various communication techniques and models that

we built in order to enable browser-based cross-domain web communication. We

started with a push-style messaging system called Bleeps, but it failed due to its

volatile nature. Messages in Bleeps were not persistent, hence they were lost if

a recipient failed to capture them in time. Then we tried to store these Bleeps in

various web services like Wiki, Twitter, and StatusNet for persistence. Some of these

experiments failed due to the scalability problem and some failed because Twitter

did not index the messages for searching.



25

CHAPTER 5

HTTP MAILBOX MESSAGING

HTTP Mailbox messaging is a fusion of Linda-style open access message storage

and a traditional email system using HTTP as transport to embrace REST style

asynchronous HTTP communication on the open Web. An HTTP Mailbox serves as

a Linda-style tuplespace for HTTP Messages.

In HTTP Mailbox messaging, HTTP requests are encapsulated inside another

HTTP Message entity to form an envelope request. A client makes an HTTP POST

Request to the HTTP Mailbox irrespective of the method of the encapsulated HTTP

message. HTTP Mailbox then stores the encapsulated HTTP Request along with

various message metadata in a persistent storage. Later, to retrieve those stored

messages, a client makes an HTTP GET request to the HTTP Mailbox. Fig. 8

shows a typical HTTP Request and Response cycle. Fig. 9 illustrates how the same

objective can be achieved using HTTP Mailbox while avoiding some of the issues of

HTTP communication such as client or server side limitations and time coupling.

An initial description of the HTTP Mailbox was published as a technical re-

port [43]. Since then it has significantly advanced in functionality. Some of the

features described in the future work section of the technical report have also been

implemented.

5.1 MAPPING LINDA TO HTTP

One of the major advantages of HTTP Mailbox messaging is making HTTP

communication asynchronous so that both the parties involved in the communication

(typically known as “client” and “server”) are time-uncoupled and do not need to

meet in time for a successful HTTP communication (or a complete “request” and

“response” cycle).

This asynchronous nature of communication is a good fit when a response from

the recipient(s) is not necessary or not immediately needed. Hence we borrowed the

“store and forward” model from Linda and transform it into a form that is suitable

in HTTP environment on the scale of the Web.
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Fig. 8. Typical HTTP Messaging Scenario.

A URI or any other identifier of the recipient(s) can be used to query messages

from the distributed message store similar to the expressions used in “rd” and “in”

functions of Linda to query the tuplespace.

Table III summarizes the transformation of Linda functions into their HTTP

equivalents.

TABLE III
HTTP Equivalents to Linda Functions

Linda HTTP Equivalent
in() GET followed by DELETE
rd() GET
out() POST
eval() Execute Request followed by optional POST (Response)

The “in” function of Linda may be redefined as a soft-delete in the HTTP envi-

ronment. We may not want to allow true deletion of messages because of the lack of

trust on open Web and authentication challenges (see chapter 7). Instead, flagging

messages as deleted (and keeping a history of actions) may be a better choice because
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Fig. 9. HTTP Mailbox Store and On-demand Delivery Scenario.

storage is not as limited as in case of pure Linda shared memory.

The “rd” function may exist without any modification and returning the message

as many times and to as many clients as requested repeatedly. To facilitate additional

functionalities, an access log may also be maintained.

The “out” function of Linda may refer to the action of preparing the desired

HTTP Request by a client and encapsulating it in another HTTP Request to send
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it to the message store.

The “eval” function of Linda may refer to the action of unpacking a stored HTTP

request by a server, performing the desired task and writing the HTTP response in

to the message store if necessary.

5.2 HTTP MESSAGE

In HTTP communication, an HTTP Message [2] is either an HTTP Request or

an HTTP Response. An HTTP Request is a message that is sent from the client to

the server. It contains a mandatory request line followed by optional headers and

optional body. The request line contains the HTTP method used in the request, the

URI of the resource, and the protocol name and its version. Headers are name-value

pairs separated by a colon (:). The body of the message can be any type of data

which has a Media type. An HTTP Response is returned from the server to the client

in response to an HTTP Request. It contains a mandatory status line followed by

optional headers and optional body. The status line contains the protocol name and

version followed by a response code (a three digit number) and a response message

(explanation of the response code). The headers and the body of the HTTP Response

have same formats as the HTTP Request.

“HTTP Request” and “HTTP Response” both translate to a unified term “HTTP

Mailbox Message”. In order to complete the “HTTP Request” or “HTTP Response”

transaction, both require a complete HTTP Mailbox messaging lifecycle.

From the HTTP Mailbox perspective, the restrictive terms “client” and “server”

posed by “HTTP Request” (from client to server) and “HTTP Response” (from

server to client) have disappeared and been replaced by the general terms “sender”

and “recipient”. But concepts of “client”, “server”, “request”, and “response” con-

tinue to live inside the message body of the “HTTP Mailbox Message”. To under-

stand the differences at the encapsulated message level, “HTTP Mailbox Message”

can further be subdivided into two categories, “Indirect HTTP Request” and “Indi-

rect HTTP Response”, in accordance with RFC 2616 “HTTP Request” and “HTTP

Response”.

5.3 INDIRECT HTTP REQUEST

Suppose Alice is using an HTTP Mailbox service hosted on example.net to

communicate with Bob’s task manager service hosted on example.com from her
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organization’s website hosted on example.org in REST style.

Code 8 Lines 7-12 is a typical HTTP PATCH request that she would send in

order to mark the completed task done. Due to client or server side limitations

(as discussed in section 1), a PATCH request may not be possible. Hence clients

encapsulate the desired HTTP PATCH request in another HTTP POST request as

illustrated in Code 8 Lines 1-12. This POST request is made to the HTTPMailbox on

a different domain. It also has a different path, Content-Type and Content-Length

as illustrated in Code 8 Lines 1-5.

Code 8. POST HTTP Mailbox Request

1 > POST /hm/http://example.com/tasks HTTP/1.1
2 > Host: example.net
3 > HM-Sender: http://example.org/alice
4 > Content-Type: message/http; msgtype: request
5 > Content-Length: 108
6 >
7 > PATCH /tasks/1 HTTP/1.1
8 > Host: example.com
9 > Content-Type: text/task-patch

10 > Content-Length: 11
11 >
12 > Status=Done
13
14 < HTTP/1.1 201 Created
15 < Location: http://example.net/hm/id/5ecb44e0
16 < Date: Thu, 20 Dec 2012 02:22:56 GMT

On a successful POST operation, HTTP Mailbox responds with a 201 Created

status code and provides a Location header with the URI of the resulting message

as illustrated in Code 8 Lines 14-16.

The request has not reached to Bob’s server yet but now it is the responsibility

of the HTTP Mailbox to deliver it when requested by Bob’s server (in other words,

when Bob’s server pulls). Hence Alice’s client is not blocked. In terms of Linda, thus

far only the “out” function has been performed.

Code 9. GET HTTP Mailbox Request

1 > GET /hm/http://example.com/tasks HTTP/1.1
2 > Host: example.net
3
4 < HTTP/1.1 200 OK
5 < Date: Thu, 20 Dec 2012 02:10:22 GMT
6 < Link: <http://example.net/hm/id/aebed6e9>; rel="first",
7 < <http://example.net/hm/id/5ecb44e0>; rel="last self",
8 < <http://example.net/hm/id/85addc19>; rel="previous",
9 < <http://example.net/hm/http://example.com/tasks>;rel="current"

10 < Via: Sent by 127.0.0.1
11 < on behalf of http://example.org/alice
12 < delivered by http://example.net/
13 < Content-Type: message/http; msgtype: request
14 < Content-Length: 108
15 <
16 < PATCH /tasks/1 HTTP/1.1
17 < Host: example.com
18 < Content-Type: text/task-patch
19 < Content-Length: 11
20 <
21 < Status=Done
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A client on behalf of http://example.com/tasks can then perform an HTTP

GET request to the HTTP Mailbox as illustrated in Code 9 Lines:1-2 and get an

HTTP response as illustrated in Code 9 Lines 4-21. This process is similar to the

“rd” function of Linda.

Two complete HTTP Request and HTTP Response cycles between a client and

HTTP Mailbox, and a server and HTTP Mailbox respectively make one Indirect

HTTP Request as illustrated in Code 8 and Code 9 and shown in Fig. 9

5.4 INDIRECT HTTP RESPONSE

After fetching messages from HTTP Mailbox and with the help of Content-Type

and Content-Length headers as illustrated in Code 9 Lines 13-14, the server can

parse the encapsulated HTTP PATCH request as illustrated in Code 9 Lines 16-

21. The extracted HTTP PATCH Request can then be transformed (if necessary),

executed on the task manager server and (if necessary,) a response may be sent to

Alice using HTTP Mailbox as illustrated in Code 10. This process is similar to the

“eval” function of Linda.

Code 10. POST HTTP Mailbox Response

1 > POST /hm/http://example.org/alice HTTP/1.1
2 > Host: example.net
3 > HM-Sender: http://example.com/tasks
4 > Content-Type: message/http; msgtype: response
5 > Content-Length: 93
6 >
7 > HTTP/1.1 200 OK
8 > Content-Type: text/plain
9 > Content-Length: 28

10 >
11 > (Done) [HIGH] Write a paper.
12
13 < HTTP/1.1 201 Created
14 < Location: http://example.net/hm/id/32ab1ce2
15 < Date: Thu, 20 Dec 2012 02:31:12 GMT

Code 11. GET HTTP Mailbox Response

1 > GET /hm/http://example.org/alice HTTP/1.1
2 > Host: example.net
3
4 < HTTP/1.1 200 OK
5 < Date: Thu, 20 Dec 2012 02:42:03 GMT
6 < Link: <http://example.net/hm/id/26d1a9c2>;rel="first previous",
7 < <http://example.net/hm/id/32ab1ce2>; rel="last self",
8 < <http://example.net/hm/http://example.org/alice>;rel="current"
9 < Via: Sent by 127.0.0.2

10 < on behalf of http://example.com/tasks
11 < delivered by http://example.net/
12 < Content-Type: message/http; msgtype: response
13 < Content-Length: 93
14 <
15 < HTTP/1.1 200 OK
16 < Content-Type: text/plain
17 < Content-Length: 28
18 <
19 < (Done) [HIGH] Write a paper.
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Later, Alice wants to check to see if her change was made, so she queries the

HTTP Mailbox as illustrated in Code 11. If Bob’s server has updated Alice’s task

list and sent a response to the HTTP Mailbox for Alice, then the response of Bob’s

server will be included in the HTTP Mailbox response to Alice’s query as illustrated

in Code 11 Lines 15-19.

5.5 MESSAGE LIFECYCLE

A complete HTTP Mailbox messaging lifecycle consists of two phases, 1) Send

and 2) Retrieve. Each phase is further divided in two parts, request and response.

Each phase corresponds to one complete Request and Response cycle of the HTTP

messaging.

Fig. 10 summarizes the process of the HTTP Mailbox communication on both

sender and recipient ends. On the client (sender) end the HTTP cycle completes in

the following steps:

• A generic HTTP Message (Request or Response) (C1) is to be sent,

• The HTTP Message is encapsulated in an HTTP POST Request to the HTTP

Mailbox (using message/http Media type) (C2) or a Pipeline of one or more

HTTP Message(s) is encapsulated in an HTTP POST Request to the HTTP

Mailbox (using application/http Media type) (C2’), and

• An HTTP Response is received from HTTP Mailbox (C3).

On the server (recipient) end the HTTP cycle completes in the following steps:

• An HTTP GET Request to the HTTP Mailbox (S1) is made to retrieve an

HTTP Message,

• The HTTP Message is encapsulated in an HTTP Response from the HTTP

Mailbox (using message/http Media type) (S2) or a Pipeline of one or more

HTTPMessage(s) encapsulated in an HTTP Response from the HTTPMailbox

(using application/http Media type) (S2’), and

• A generic HTTP Message (Request or Response) is extracted from the HTTP

Mailbox Response (S3).
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CLIENT

(C1)

METHOD URI HTTP/1.1
HTTP-Headers: If any
Content-Length: X

Entity body (if any)

(C2)

POST /hm/URI HTTP/1.1
HM-Headers: If any
Content-Type: message/http
Content-length: Y

METHOD URI HTTP/1.1
HTTP-Headers: If any
Content-Length: X

Entity body (if any)

HTTP/1.1 201 Created
Location: Message URL

(C3)

(C2’)

POST /hm/URI HTTP/1.1
HM-Headers: If any
Content-Type: application/http
Content-length: Y

METHOD URI HTTP/1.1
HTTP-Headers: If any
Content-Length: X

Entity body (if any)

METHOD URI HTTP/1.1
HTTP-Headers: If any
Content-Length: X

Entity body (if any)

METHOD URI HTTP/1.1
HTTP-Headers: If any
Content-Length: X

Entity body (if any)

SERVER

(S1)

GET /hm/URI HTTP/1.1
HM-Headers: If any

(S2)

HTTP/1.1 200 OK
HM-Headers: If any
Content-Type: message/http
Content-length: Y

METHOD URI HTTP/1.1
HTTP-Headers: If any
Content-Length: X

Entity body (if any)

METHOD URI HTTP/1.1
HTTP-Headers: If any
Content-Length: X

Entity body (if any)

(S3)

(S2’)

HTTP/1.1 200 OK
HM-Headers: If any
Content-Type: application/http
Content-length: Y

METHOD URI HTTP/1.1
HTTP-Headers: If any
Content-Length: X

Entity body (if any)

METHOD URI HTTP/1.1
HTTP-Headers: If any
Content-Length: X

Entity body (if any)

METHOD URI HTTP/1.1
HTTP-Headers: If any
Content-Length: X

Entity body (if any)

Fig. 10. HTTP Mailbox Lifecycle on Client (Sender) and Server (Recipient) Sides.
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5.5.1 SEND REQUEST

In the first phase of the HTTP Mailbox messaging, a message is sent from the

client (by or on behalf of a message sender) to the HTTP Mailbox server. This

contains an identifier of the recipient(s), some extra metadata, and message body.

To send a message, an HTTP POST Request is made to the HTTP Mailbox

server with the recipients’ identifier appended to the HM-Base of the mailbox as

advertised by the HTTP Mailbox service on a well-known URI (or root URI of the

service). The HTTP Mailbox service host as Host header and other extra metadata

should go in the HTTP headers (to be described in section 6.5). The entity must be a

valid message/http or application/http request and an appropriate Content-Type

header must be present in the request headers (portions C2 and C2’ of Fig. 10).

5.5.2 SEND RESPONSE

Send Response is a feedback message from the HTTP Mailbox server to the

message sender after receiving the “send request” message.

A status code 201 Created will be returned along with the URI of the message

in the Location header or an error code (e.g., 4xx/5xx) in case of failure (portion C3

of Fig. 10). A success response (status code 201 Created) from the HTTP Mailbox

server is a confirmation that the message has been stored and a promise that the

message will be delivered whenever requested on behalf of the recipient(s).

5.5.3 RETRIEVE REQUEST

The second phase of the HTTPMailbox messaging begins with a message retrieval

request from a client (by or on behalf of the recipient(s)). This request is made to

the HTTP Mailbox server along with the identifier of the recipient(s) or direct URI

of the message (if known), MIME type, and extra headers if necessary.

To retrieve the most recent message for a recipient, an HTTP GET request is

made to the HTTPMailbox server with recipients’ identifier appended to the HM-Base

(to be described in section 6.2) of the mailbox as advertised by the HTTP Mailbox

service. The HTTP Mailbox service host as Host header and other extra metadata

should go in HTTP headers (if necessary) while the entity must be empty. To retrieve

an arbitrary message from the HTTP Mailbox server, an HTTP GET request must

be made to the unique URI of the message (portion S1 of Fig. 10).
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5.5.4 RETRIEVE RESPONSE

Retrieve Response is the final stage of the HTTP Mailbox messaging lifecycle. It

is the response message from HTTP Mailbox server to the client when a “retrieve

request” is made. It contains the message in the response body, and the MIME type

and several other essential or optional headers in the header section of the response.

If the retrieval query was successful, a status code of 200 OK should be re-

turned along with Via, Link, Memento-Datetime, Content-Type, Content-Length

and other optional headers (if necessary) followed by the message in the HTTP re-

sponse body. The Memento-Datetime [44] header contains the datetime when the

message was first seen by the HTTP Mailbox. The Link header is used to provide

navigational links to traverse the message chain back and forth (to be described

in section 6.7), identified by recipients’ identifier. In case of success, the entity

will be a valid message/http or application/http response and the appropriate

Content-Type header will be present in the response headers. If the query does

not match any messages or any other error occurred, an appropriate status code

(i.e., 4xx/5xx) should be returned (portions S2 and S2’ of Fig. 10).

5.6 SUMMARY

In this chapter we described the HTTP Mailbox. After experimenting with var-

ious communication models, we realized that if we can enable time-uncoupling and

group messaging in HTTP communication, then we can easily utilize it in a browser-

based web communication. We created a mailbox for HTTP messages that is inspired

by the tuplespace of the Linda model. We discussed encapsulation of an HTTP Mes-

sage in another HTTPMessage and various phases of HTTPMailbox communication.

The HTTP Mailbox not only enabled time-uncoupling and group communication,

but it has also removed the cross-domain restriction (to be discussed in section 6.8)

and enabled the full range of HTTP methods. The HTTP Mailbox has accumulated

all the advantages of Linda, REST and Relay HTTP.
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CHAPTER 6

MAILBOX API

One of the REST principles is Hypermedia as the Engine of Application State

(HATEOAS) [16, 45]. According to this, a client needs no prior knowledge about

how to interface with a RESTful service, except the generic understanding of relation

types [46] and MIME types [47]. A client begins interaction with the service from a

fixed URI and discovers future actions within the resource representations returned

from the server. Clients should not rely on out-of-band information to interact with

the RESTful service [48].

6.1 RECIPIENT

In the HTTP Mailbox communication model, the recipient identifier is flexible.

It can be a URI, string literal, or a mix of the two, as opposed to the synchronous

HTTP communication where the target should always be a URI or path (of a single

resource). This flexibly enables group communication (multicast). To illustrate

various ways to indicate the recipients in the HTTP Mailbox requests, consider the

following scenarios.

Suppose that Alice and Bob were classmates in year 2000. A few years later Alice

wants to send a message to Bob, and Bob can be reached at http://example.com/

bob. She will send an HTTP Mailbox request as follows.

POST /hm/http://example.com/bob HTTP/1.1

Alice now wants to send a message to all of her classmates. Suppose that there

was a home page for her class in her school’s website at http://example.edu/class/

2000. If she chooses to take this URI as an identifier for the group of her class mates,

she can send an HTTP Mailbox request as follows.

POST /hm/http://example.edu/class/2000 HTTP/1.1

Now consider that a sub-group of Alice’s class mates were known as “lazy-geeks”

and she wants to send message to only this sub-group. She can send an HTTP

Mailbox request as follows.
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POST /hm/lazy-geeks HTTP/1.1

We have also explored another possibility of group messaging based on rela-

tionships. In this type of group messaging we can utilize well-known relations

like “friends” or “family” (defined somewhere in a Resource Description Framework

(RDF) [49] vocabulary) to infer the recipients. For example if Alice wants to send

a message to all of the friends of Bob, she can use the literal relationship “friends”

followed by the identifier of Bob (i.e., http://example.com/bob). She can send an

HTTP Mailbox request as follows.

POST /hm/friends/http://example.com/bob HTTP/1.1

The recipients’ identifier is same for both POST and GET requests. A message

can be retrieved by making a GET request to the exact same recipient identifier as

it was used at the time of sending the message using POST request, if it is the most

recent message for that recipient, otherwise URI of the message will be required to

retrieve it.

6.1.1 RELATIONSHIP RESOLUTION

A ResourceMap can be used to resolve the relationship in a recipients’ identifier.

A web object can have links in its ResourceMap to all the resources that are friends,

family members, or related to the web object with any other relationship as illustrated

in appendix B Code 21 Lines 78 and 101. Individual recipients can be identified

using the definition of the relationship and the ResourceMap. It is similar to the

relationship found in the Friend of a Friend (FoaF) [50] or social networks.

A relationship can be resolved at the time of message sending or at the time of

retrieval. If there is significant time delay between sending and retrieving messages

then there might be significant difference between the two resolution scenarios. The

choice of one of the two resolution scenarios is application dependent.

A relationship can be resolved by the HTTP Mailbox service or it can be off-

loaded to the client. For the sake of simplicity, we have chosen the latter option in

our reference implementation. Adding this knowledge in the HTTP Mailbox itself

will affect the performance of the system significantly, and it will add several external

dependencies in the HTTP Mailbox.
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6.2 HM-REQUEST-PATH

An HTTPMailbox service will advertise its base path (or base URI) for messaging

called HM-Base (see appendix A). This HM-Base will be used to construct the request

path (or request URI) at the time of sending or retrieving messages to or from HTTP

Mailbox. In our examples, HM-Base is /hm/.

The HM-Request-Path consists of three parts, the HM-Base, followed by an

optional parameter (used in GET requests), followed by a recipients’ identifier.

We will discuss the optional parameter in sections 6.3 and 6.4. The recipients’

identifier can be a URI or any URL-encoded string token. Codes 8 and 9 have

http://example.com/tasks as the recipient identifier in their first lines. A typical

HM-Request-Path is illustrated below.

/hm/http://example.com/tasks

The corresponding request URI is illustrated below:

http://example.net/hm/http://example.com/tasks

The recipients’ identifier may or may not match the path (or URI) in the

Request-Line of the enclosed entity body. This is particularly important, because

HTTP Mailbox is an on demand message delivery service and it does not allow wild-

card searching. For example, if Alice’s PUT request is to be sent to Bob’s server to

create a new resource at a non-existing URI, the HM-Request-Path may never be

queried by Bob’s server and the message will remain unread forever. In our exam-

ples, we have used http://example.com/tasks as the recipient identifier while the

enclosed entity has http://example.com/tasks/1 as its URI.

6.3 TIME BASED ACCESS

A GET request to HM-Request-Path as illustrated in section 6.2 returns the most

recent message from the message chain. The most recent message gives the URIs

of the first and last messages in the chain which allows the traversal of the message

chain from either direction.

Suppose Bob’s task manager service has been using the HTTP Mailbox for a long

time, and it has a large number of messages in its message chain. Bob’s server likes

to retrieve and process messages in chronological order (i.e., from the first message
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to the most recent message). Bob’s server has recently checked his mailbox and read

all the messages in its message chain. Later, if Bob’s server checks its mailbox again

then it can either traverse through all the earlier messages it has already processed

to reach to the place it has left the message chain last time, or it can retrieve only the

unprocessed messages in reverse-chronological order and reverse their order locally

before processing. To avoid this extra work, Bob’s server can store the URI of the

last processed message to start traversal again from there.

The HTTP Mailbox provides a way to access the message chain based on the

time when a message was first seen by the HTTP Mailbox (nearly when the message

was sent). In this case an optional time parameter is passed between the HM-Base

and the recipients’ identifier. This will return the earliest message from the message

chain that was added in the chain after the given time, if any. The time parameter

needs to be a 14 digit integer in YYYYMMDDHHMMSS format where symbols correspond

to year, month, day, hour, minute, and second respectively. This time needs to be in

UTC time zone.

If Bob’s task server wants to retrieve the earliest message after 2013-02-17 02:46:05

then it can make a GET request to the following HM-Request-Path.

/hm/20130217024605/http://example.com/tasks

This request format with optional time parameter is only available to GET re-

quests.

6.4 RESPONSE PAGINATION

So far we have only discussed retrieval of one message from a message chain at a

time. This retrieval mechanism is simple but time consuming because every message

requires a round trip HTTP communication. This is impractical if large number of

messages are to be retrieved from the mailbox.

To overcome this problem, the HTTP Mailbox facilitates response pagination.

Every message in the message chain gets a sequence number starting from 0 for the

first message and incremented by 1 till the last message of the chain. To retrieve a

page of multiple consecutive messages from the message chain with a single request,

the client needs to send the starting and the ending sequence numbers separated by

a minus sign (-) as an optional parameter between the HM-Base and the recipients’

identifier. The two numbers need to be positive integers or zero, and the starting
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Fig. 11. Pagination in the Message Chain.

sequence number must not be greater than the ending sequence number. The HTTP

Mailbox will determine the page size based on the given range. The HTTP Mailbox

will also determine the links of first, last, next and previous pages of the same

size based on the given range in the current request. The following equations can be

used to determine appropriate page navigation links.

LS = Sequence number of the last message in the message chain

(Last Sequence number)

BC = Starting sequence number from the request parameter

(Beginning of the Current page)

EC = Ending sequence number from the request parameter

(End of the Current page)

PS = EC −BC + 1 (Page Size)

BP = max(0, BC − PS) {if BC > 0} (Beginning of the Previous page)

EP = BC − 1 {if BC > 0} (End of the Previous page)

BN = EC + 1 {if EC < LS} (Beginning of the Next page)

EN = min(LS,EC + PS) {if EC < LS} (End of the Next page)

BF = 0 (Beginning of the First page)

EF = min(LS, PS − 1, (BC + PS − 1) mod PS) (End of the First page)

BL = max(LS − ((LS −BC) mod PS)) (Beginning of the Last page)

EL = LS (End of the Last page)
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Code 12. Paginated GET HTTP Mailbox Request

1 > GET /hm/2-4/http://example.com/tasks HTTP/1.1
2 > Host: example.net
3
4 < HTTP/1.1 200 OK
5 < Date: Thu, 20 Dec 2012 02:10:22 GMT
6 < Link: <http://example.net/hm/2-4/http://example.com/tasks>; rel="self",
7 < <http://example.net/hm/0-1/http://example.com/tasks>; rel="first previous",
8 < <http://example.net/hm/8-8/http://example.com/tasks>; rel="last",
9 < <http://example.net/hm/5-7/http://example.com/tasks>; rel="next"

10 < Content-Type: application/http
11 < Content-Length: 1985
12 <
13 < HTTP/1.1 200 OK
14 < Memento-Datetime: Tue, 18 Dec 2012 05:15:55 GMT
15 < Link: <http://example.net/hm/id/d1472c17>; rel="self",
16 < <http://example.net/hm/id/aebed6e9>; rel="first",
17 < <http://example.net/hm/id/5ecb44e0>; rel="last",
18 < <http://example.net/hm/id/25ad905c>; rel="next",
19 < <http://example.net/hm/id/85addc19>; rel="previous",
20 < <http://example.net/hm/http://example.com/tasks>;rel="current"
21 < Via: Sent by 127.0.0.1
22 < on behalf of http://example.org/alice
23 < delivered by http://example.net/
24 < Content-Type: message/http; msgtype: request
25 < Content-Length: 108
26 <
27 < PATCH /tasks/1 HTTP/1.1
28 < Host: example.com
29 < Content-Type: text/task-patch
30 < Content-Length: 11
31 <
32 < Status=Done
33 <
34 < HTTP/1.1 200 OK
35 < Memento-Datetime: Tue, 18 Dec 2012 01:24:13 GMT
36 < Link: <http://example.net/hm/id/25ad905c>; rel="self",
37 < <http://example.net/hm/id/aebed6e9>; rel="first",
38 < <http://example.net/hm/id/5ecb44e0>; rel="last",
39 < <http://example.net/hm/id/7a150ade>; rel="next",
40 < <http://example.net/hm/id/d1472c17>; rel="previous",
41 < <http://example.net/hm/http://example.com/tasks>;rel="current"
42 < Via: Sent by 127.0.0.1
43 < on behalf of http://example.org/alice
44 < delivered by http://example.net/
45 < Content-Type: message/http; msgtype: request
46 < Content-Length: 42
47 <
48 < DELETE /tasks/2 HTTP/1.1
49 < Host: example.com
50 <
51 < HTTP/1.1 200 OK
52 < Memento-Datetime: Wed, 19 Dec 2012 21:21:25 GMT
53 < Link: <http://example.net/hm/id/7a150ade>; rel="self",
54 < <http://example.net/hm/id/aebed6e9>; rel="first",
55 < <http://example.net/hm/id/5ecb44e0>; rel="last",
56 < <http://example.net/hm/id/15a3dd12>; rel="next",
57 < <http://example.net/hm/id/25ad905c>; rel="previous",
58 < <http://example.net/hm/http://example.com/tasks>;rel="current"
59 < Via: Sent by 127.0.0.1
60 < on behalf of http://example.org/alice
61 < delivered by http://example.net/
62 < Content-Type: message/http; msgtype: request
63 < Content-Length: 106
64 <
65 < PATCH /tasks HTTP/1.1
66 < Host: example.com
67 < Content-Type: text/task
68 < Content-Length: 31
69 <
70 < (Pending) [LOW] Go on vacation.

In a paginated response, the HTTP Mailbox concatenates all the individual mes-

sage responses in the given range as a pipeline. This pipeline is then wrapped in

another HTTP response as an entity. If the given range does not exist in the mes-

sage chain then the HTTP Mailbox will return a 404 Not Found response. Suppose

that Bob’s server has 9 messages in its message chain starting from sequence number

0 to 8 as illustrated in Fig. 11 and it wants to access them three consecutive messages

at a time (or page size of 3). Suppose that it requests “2-4” as the range to start the

retrieval. Code 12 illustrates the request and response of this scenario. In Code 12
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Lines 1-2 represent the page request, Lines 4-70 represent the paginated response.

Lines 4-11 represent the headers related to the paginated response while Lines 13-

32, Lines 34-49, and Lines 51-70 are the three individual response messages that

the HTTP Mailbox would have been returned if those were requested individually.

Lines 6-9 represent the navigation URIs of pages. Page related headers do not have

Via and Memento-Datetime headers (as these belong to the individual messages)

while message related headers do not have a Date header because it belongs to the

current request.

The pagination option is only available in GET requests (message retrieval). If

client wants to send multiple messages to a single recipient, it can send them all as

a single pipeline message. But those messages will be counted as one message and

their individual retrieval will not be possible.

The parameters for pagination and time based access both have the same place

in the HM-Request-Path hence they cannot work together in conjunction. If this

optional parameter is a 14 digit integer then the HTTP Mailbox recognizes it as

the time-based access parameter. If the optional parameter is a combination of two

integers separated by a minus sign (-) then the HTTP Mailbox recognizes it as the

pagination parameter. In all other cases it will be considered to be part of the

recipients’ identifier.

6.5 HM-HEADERS

In addition to standard HTTP headers, some headers are defined by the HTTP

Mailbox or being utilized from various HTTP extensions. In a Send Request, the

HM-Sender request header is sent to indicate the original sender because the client

sending the message may be sending it on behalf of someone else (see appendix A for

the format of the HM-Sender header). On the other hand, in a Retrieve Response (in

case of success) a Via [2] header is returned containing the identifier of the sender

and the hostname or IP address of the client. A typical Via header is illustrated

below.

Via: Sent by 127.0.0.1 on behalf of http://example.org/alice delivered by http://example.net/

A Retrieve Response (in case of success) must also return a Link [51] header

containing self, current, first, last, next, and previous message URIs as appli-

cable. The Link header contains a comma separated list of URIs and their respective
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relations with the response message. URIs are enclosed in angular brackets and rela-

tions are enclosed by quotes while the two are separated by a semi-colon as illustrated

below. The relation indicated by rel can have multiple values separated by spaces.

Link: <http://example.net/hm/id/aebed6e9>; rel="first", <http://example.net/hm/id/5ecb44e0>; rel="last self"

The HTTP Mailbox will also return a Memento-Datetime header (described in

appendix A as Memento-header) to report the time when the enclosed message was

first seen by the HTTP Mailbox. For the sake of simplicity, this header was excluded

from various examples.

In a Send Response a Location header containing the URI of the newly sent

message will be returned from the HTTP Mailbox along with the status code 201 if

the message was successfully stored.

Headers that are introduced by the HTTP Mailbox and have no prior reference

will have a prefix of “HM-” for example HM-Sender. There is another class of headers

that have been introduced by the HTTP Mailbox but are not consumed by the

HTTP Mailbox directly. These headers are generated by the message sender and

forwarded to the recipient(s) of the message. We call them “HM-Forward” headers.

The HTTP Mailbox will store those headers separate from the entity as metadata.

These headers are particularly useful if the header section inside the encapsulated

HTTP message itself is not the best place to add them. For example if the HTTP

message is encrypted and the sender wants to inform the recipient how to decrypt the

TABLE IV
Categories of HTTP Mailbox Headers

Category Example Description

HTTP Header Host, Date, Link, Via,
Content-Length

It includes HTTP headers defined in
RFC 2616 or its extensions.

HM-* HM-Sender These request or response headers are in-
troduced in the HTTP Mailbox and the
HTTP Mailbox understands them.

HM-Forward-* HM-Forward-Encoding,
HM-Forward-Content-MD5

These headers will not be used by the
HTTP Mailbox directly but they will be
forwarded to the recipient(s) as received
from the sender. Sender and Recipient(s)
may agree on any general header of this
type to pass extra data that cannot fit in
the message body.
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TABLE V
Headers Used in HTTP Mailbox

Header Type Description

Content-Type Entity It indicates the media type of the en-
tity.

Content-Length Entity It indicates the size (octet count) of
the entity.

Link Entity It is utilized in responses from the
HTTP Mailbox to list various links re-
lated to the returned message.

Host Request It indicates the hostname and port
number of the server. It is not needed
if full URI is given in the request line.

Origin Request It is being utilized in CORS to indicate
the hostname and port number of the
request originating server.

Location Response When a message is sent to the HTTP
Mailbox, it returns the URI of the
newly created message to the sender
using this header.

Memento-Datetime Response It indicates the date and time when
the message was first seen by the
HTTP Mailbox.

Access-Control-Allow-Origin Response It gives the list of allowed origins for
CORS.

Access-Control-Expose-Headers Response It gives the list of headers that are ex-
posed to the client in CORS.

Access-Control-Allow-Methods Response It gives the list of allowed methods for
CORS.

Date General It indicates the time when message
was originated.

Via General It is utilized in the HTTP Mailbox re-
sponse to indicate the sender and the
client used to send the message.

HM-Sender HM This is a request header that client
needs to send in order to indicate the
sender of the message.

HM-Forward-Encoding HM-Forward This header is used to encode the mes-
sage and forward the related informa-
tion to the recipient.

HM-Forward-Content-MD5 HM-Forward This header contains the MD5 digest
of the entity to verify the integrity.
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message, such an indication can be put in the “HM-Forward” header. HM-Forward

header is a generic header that has HM-Forward-* format. Sender and recipient(s)

may agree upon any number of such headers to communicate extra information.

Table IV gives an overview of various categories of headers and their examples.

Table V lists the headers that are being utilized in the HTTP Mailbox. More

HTTP Mailbox specific headers can be added later to extend the features of HTTP

Mailbox.

6.6 HM-BODY

All Send Requests and successful Retrieve Responses must contain HM-Body

as entity body. HM-Body is a Request or Response HTTP-Message in one of the

message/http (single) and application/http (pipeline) media types defined in [2].

The corresponding Content-Type header must be present in the HM-Headers. In

other cases, there may be no entity body or any generic entity body with an ap-

propriate Content-Type header and Status-Code. In the case of Retrieve Request,

there must not be any entity body because it is an HTTP GET request.

6.7 MESSAGE CHAIN

The HTTP Mailbox query mechanism using HM-Request-Path as illustrated in

section 6.2 allows the retrieval of the single “most recent” message sent to the corre-

sponding recipient (if any). Every message also has a unique URI that can be used

to retrieve the message. By using the Link header of the response from the HTTP

Mailbox, an arbitrary number of messages or the entire message chain for the re-

cipient(s) can be retrieved in either chronological or reverse chronological order, one

message at a time. In a successful Retrieve Response, the Link header will contain

the URI of the most recent message based on HM-Request-Path for the recipient as

rel=current. It must also return unique URIs of self, first, and last messages

with corresponding rel attributes. HTTP Mailbox will also return unique URIs of

previous and next messages if present with corresponding rel attributes. Multiple

rel attributes can be put together separated by a space if they point to the same URI.

The absence of the next relation and same values of self and last, both indicate

the end of the message chain. Similarly, the absence of the previous relation and

same values of self and first, both indicate the beginning of the message chain.

Clients may use these indicators to detect either end of the message chain at the time
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Fig. 12. Message Chain.

of retrieval. Usually the beginning of the message chain remains the same while end

of the chain keeps changing over the time as more and more messages arrive for the

same recipient. Fig. 12 shows how messages are arranged in chronological order and

linked together to form a chain of messages. Fig. 13 shows a typical message chain

retrieval scenario where the most recent message is retrieved first then it follows the
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Fig. 13. Message Chain Retrieval.
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previous link from the header until the first message in the chain is retrieved.

6.7.1 CHAIN IMPLEMENTATION

There can be different ways to implement the message chain depending on the

storage service. In our reference implementation we used a linked list like structure

to form the message chain and retrieve it efficiently.

If every message stores the references of previous, next, first, and last messages

locally then the retrieval efficiency will be good but posting a message will cause all

the previous messages in the chain to be modified in order to update the last message

reference. This approach has a linear complexity with respect to the message chain

size.

An efficient approach could be to have first and last message references stored

in the metadata of the message chain rather than in each individual message. At

the time of message retrieval, particular message and message chain metadata needs

to be fetched in order to prepare the response that contains references to previous,

next, first, and last messages. When a new message is sent to be added at the end

of the message chain, it only requires modifications in two places. The message

that was previously the last message to reference next message and the message

chain metadata to reference new message as the last message. This approach has a

constant complexity independent of the size of the message chain.

6.8 ACCESSIBILITY

An HTTP Mailbox service should provide full CORS support so that restricted

clients (like web browsers) can allow message sending and retrieval to and from the

HTTP Mailbox while avoiding the JavaScript same-origin policy.

Code 13. CORS Response Headers

1 > HEAD /hm/http://example.com/tasks HTTP/1.1
2 > Host: example.net
3 > Origin: example.org
4
5 < HTTP/1.1 200 OK
6 < Access-Control-Allow-Origin: example.org
7 < Access-Control-Allow-Methods: GET, POST, OPTIONS
8 < Access-Control-Expose-Headers: Link, Via, Date, Memento-Datetime
9 < Date: Thu, 20 Dec 2012 02:10:22 GMT

10 < Link: <http://example.net/hm/id/aebed6e9>; rel="first",
11 < <http://example.net/hm/id/5ecb44e0>; rel="last self",
12 < <http://example.net/hm/id/85addc19>; rel="previous",
13 < <http://example.net/hm/http://example.com/tasks>;rel="current"
14 < Via: Sent by 127.0.0.1
15 < on behalf of http://example.org/alice
16 < delivered by http://example.net/
17 < Content-Type: message/http; msgtype: request
18 < Content-Length: 108
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To support CORS, the HTTP Mailbox needs to return CORS related head-

ers (that are prefixed with “Access-Control-”) like Access-Control-Allow-Origin,

Access-Control-Expose-Headers, and Access-Control-Allow-Methods (all

CORS related headers are described in CORS specifications [9]). Code 13 Lines 6-8

illustrate the typical CORS related response header in the HTTP Mailbox. The

Access-Control-Allow-Origin header gives a comma separated list of origins that

are allowed to make CORS requests. If an HTTP Mailbox allows every domain to

perform CORS requests, it can either echo back the value of Origin [52] header

or return a wildcard character “*”. The Access-Control-Allow-Methods header

gives a comma separated list of HTTP methods that are allowed for CORS. The

Access-Control-Expose-Headers header gives a comma separated list of headers

that should be exposed to the client. This header plays an important role in nav-

igating through message chain. If Link header is not exposed to the client the

JavaScript-based clients will not be able to access the vale of the Link header hence

they will fail to discover the URI of the other messages in the message chain.

Some browsers have a bug that prevents them from exposing response headers

in CORS although the Access-Control-Expose-Headers header is setup correctly.

See appendix C for a detailed description of the bug and its workaround.

6.9 SUMMARY

In this chapter we described various components of HTTP Mailbox messaging.

We described how the various forms of recipients’ identifier enables group communi-

cation, how time-based message retrieval and pagination is enabled, and how message

chain works. We discussed various headers utilized in the HTTP Mailbox communi-

cation. Finally, we discussed the importance of CORS support in the HTTP Mailbox

and how it is enabled.
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CHAPTER 7

ATTACKS AND PREVENTION

HTTP Mailbox communication provides open access to the mailbox. This means

anyone can send and receive messages on behalf of anyone. Although it makes the

design of the HTTP Mailbox simple, it raises concerns related to security, privacy,

authentication, and spamming. In some applications this may not be a problem; for

wider applicability the HTTP Mailbox must allow ways to deal with these things.

The design of the HTTP Mailbox is flexible enough to allow clients and servers to

devise their own mechanisms to deal with these concerns. This way the responsibility

is offloaded to the senders and recipients.

In HTTPS (Hypertext Transfer Protocol Secure) [53] communication, security is

delegated to a separate layer in which HTTP traffic is protected by SSL/TLS [54].

The HTTP Mailbox itself can operate on HTTPS but it will not prevent attacks over

the complete lifecycle of the HTTP Mailbox communication.

When deciding on a mechanism to ensure security, privacy, or authenticity, one

should be aware that HTTP Mailbox is an asynchronous store and forward system.

Hence protocols that involve multiple steps back and forth between sender and recip-

ient to set up encryption mechanism are not suitable. Senders and recipients either

need to agree upon an encryption key in advance or they need to use a protocol that

does not require multiple message exchanges to setup the key. In this chapter we

will describe how public key encryption can be used to achieve security, privacy and

authentication.

7.1 ATTACKS

Here we will examine various possible attacks in an HTTP Mailbox lifecycle. We

will also look briefly into possible attack prevention techniques that are feasible in

the HTTP Mailbox assisted communication.

Assume that Alice is the sender of the message, Bob is the recipient, and Carol

is an intruder. Also assume that they are using the HTTP Mailbox to exchange

messages. Table VI briefly describes some of the possible attacks. These attacks are

also illustrated in Fig. 14.
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(a) DoS (b) Spamming

(c) Impersonation (d) Fake Authorization

(e) Integrity (f) Privacy

(g) Security (h) Man-in-the-Middle

Fig. 14. Various Attacks.
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TABLE VI
Various Attacks at a Glance

Attack Victim Example Prevention
DoS HTTP

Mailbox
Carol can flood with heavy
volume of GET/POST re-
quests and cause DoS attack
on HTTP Mailbox service.

Limiting ac-
cess

Spam Recipient Carol can send unwanted/s-
pam messages to Bob.

Spam filtering

Impersonation Sender Carol can impersonate as Al-
ice and send messages to Bob
as if those were sent by Alice.

Signing

Fake Authorization Sender Carol can send messages on
Alice’s behalf and maliciously
claim the authorization to
send messages on her behalf.

OAuth [55] or
access token

Integrity Message Bob may retrieve a message
that is not exactly the same
as it was sent from Alice.

Hash digest

Privacy Sender and
Recipient

Carol can read messages sent
by Alice that are stored in the
HTTP Mailbox.

Encryption

Security Sender and
Recipient

Carol can edit, delete, or
change the state of the stored
messages.

Authentication

Man-in-the-middle Sender and
Recipient

Carol can eavesdrop POST
HTTP traffic between Al-
ice and HTTP Mailbox or
GET HTTP traffic between
Bob and HTTP Mailbox and
change the message packets.

HTTPS

7.1.1 DENIAL OF SERVICE ATTACK

An attacker can send a large number of GET/POST requests with huge payloads

to the HTTP Mailbox that can cause DoS (Fig. 14(a)). At HTTP Mailbox this type

of attack can be prevented by limiting access in various ways. An HTTP Mailbox

may have limit on the maximum size of the data that can be sent in a single POST

request. It may also limit the maximum number of requests over a period of time

from one IP address. Maintaining white/black lists may also help blocking attackers
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while allowing legitimate access. A white list contains the list of approved users and

a black list contains the list of blocked users.

7.1.2 SPAM

Sending unwanted messages to the recipients’ mailbox is called spamming

(Fig. 14(b)). This is a serious problem that can cause an increase in the time to

access all unread messages. A recipient may safely discard any unwanted messages,

but it will require more HTTP GET requests to access entire thread of unread mes-

sages because HTTP Mailbox only allows sequential (chronological) access from ei-

ther direction. Like traditional email services, the main victim of this attack is the

recipient. To avoid this issue, HTTP Mailbox needs to have some ways to identify

spam messages and prevent them from being saved in the Mailbox.

Another approach could be to use third party services to identify potential

spammers and limit the POST requests to only authentic clients. For example,

if the HTTP Mailbox requires authentication/authorization from some OAuth [55]

providers like Twitter, Facebook, Google, or OpenID before it lets someone POST

anything then spam identification will be off-loaded to these third party services in-

directly. This approach is based on sender’s credibility instead of the content of the

posted message.

7.1.3 IMPERSONATION

The HTTP Mailbox is an open mailbox where any one can store and retrieve

messages. This open nature enables the possibility of sending and retrieving someone

else’s messages by faking the identity (Fig. 14(c)). To avoid this issue, a private-key

signature can be put in place in every POST request. The sender and the recipient(s)

need to deal with the signing of the message using private-key of the sender and

decrypting it back using public-key of the sender. The public-key should be hosted

in a place which is owned by the sender and the location of the public-key should be

provided in the HTTP headers.

7.1.4 FAKE AUTHORIZATION

In this attack an attacker does not impersonate but falsely claims the autho-

rization on someone else’s behalf (Fig. 14(d)). It may affect both the sender and
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recipient but main victim of this type of attack are the senders responsible for send-

ing messages. While fake authorization may affect the recipient as well if retrieving a

message also changes the state of the message. In most of the cases message retrieval

can be kept open to reduce the complexity of the system.

An HTTP Mailbox can use OAuth or other mechanisms of access tokens to put

authorization in place. Senders can register their authorized clients with the HTTP

Mailbox and set up access tokens that clients can use at the time of sending mes-

sages. This way the HTTP Mailbox can ensure that only authorized clients can send

messages on a particular sender’s behalf.

7.1.5 INTEGRITY

If a retrieved message is not exactly the same as it was sent then it has lost

its integrity (Fig. 14(e)). There could be many reasons why this had happened.

It may be caused by network issue, corrupted message store, man-in-the-middle or

unintended modification of the stored message (possibly by an attacker).

A hash digest of the message can be added in the HTTP headers to check the

integrity. This may not be helpful in detecting the integrity if it was caused by

an attacker. But those attacks can be avoided by other means as described in the

coming sections of security and man-in-the-middle attacks.

7.1.6 PRIVACY

Due to the open nature of HTTP Mailbox anyone can read the stored messages of

anyone (Fig. 14(f)). If this is not in the best interests of the sender and recipient, they

can encrypt the messages before sending POSTing with appropriate HTTP headers

in place to indicate the encryption. Only the legitimate recipient(s) should then

be able to decrypt the messages. If it is a unicast message then public private-key

encryption can be used and in case of group messaging, shared key encryption can

be used.

7.1.7 SECURITY

Gaining access to someone else’s content and making unauthorized changes like

editing or deleting a message or changing the state of the message is considered as

security attack (Fig. 14(g)). To avoid this threat the HTTP Mailbox may require
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locally hosted or third party authentication (for example OAuth) for all the requests

that may cause changes in a message or its state.

7.1.8 MAN-IN-THE-MIDDLE

An attacker may intercept GET or POST HTTP requests or responses between

clients (sender/recipient) and the HTTP Mailbox (Fig. 14(h)). In this case the

attacker can modify the message (request/response) before it reaches the destination.

Man-in-the-middle attack can succeed only when the attacker can impersonate both

client and server.

The HTTP Mailbox can use Secure Socket Layer (SSL) [56] to prevent from the

man-in-the-middle attack.

7.2 PUBLIC-KEY CRYPTOGRAPHY

Public-key cryptography [57] is an asymmetric key cryptography in which there

are two keys. If a message is encrypted using one of the two keys, it can only be

decrypted using the other key as illustrated in Fig. 15. Ciphering using public-key

is called encryption and ciphering using private-key is called signing. RSA [58] is a

good example of asymmetric key based cryptography. This technique will be utilized

in the following sections 7.3, 7.4, and 7.5.

In practice, a key pair is generated, one of the keys is kept secret as private-key

while the other one is advertised as public-key and is kept in a place where anyone

can get it. There are couple of ways to ensure that the public-key actually belongs

to whom it is claimed. One of those ways is to keep the public-key in a place which

is owned by the entity claiming as the owner of the public-key. Another approach

is to host the public-key in public-key registries and get it signed by several trusted

parties.

7.3 ENCRYPTING THE HTTP MESSAGE

Alice wants to send an HTTP Request (as illustrated in Code 8) to Bob’s task

service using HTTP Mailbox but she does not want to expose the contents of her

request to anyone except Bob’s server. She can encrypt her HTTP Request using

the public-key of Bob’s task server then send it to the HTTP Mailbox. This way

anyone can retrieve that message but cannot read the content meaningfully unless
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has access to the private-key of Bob’s task server to decrypt it. An indication of

this encryption needs to be recorded in the HM-Headers in order to recognize that

the message was encrypted using a public-key. The URI of the public-key used in

encryption needs to be there in the header in order to recognize the private-key

counter part for decryption.

The HTTPsec [59] protocol has a similar approach to add authentication headers

in the HTTP request but it cannot be used here because it involves initial set up in

order to client and server to agree on a shared token.

Code 14. Encrypting HTTP Message

1 > POST /hm/http://example.com/tasks HTTP/1.1
2 > Host: example.net
3 > HM-Sender: http://example.org/alice
4 > Content-Type: message/http
5 > HM-Forward-Encoding: rsa-encrypt certificate=http://example.com/bob.pub
6 > Content-Length: 39
7 >
8 > NOTMEANINGFULLYREADABLEENCRYPTEDMESSAGE

Code 14 illustrates how an encrypted HTTP message will be sent to the HTTP

Mailbox. Code 14 Line 5 is an HM-Forward header that will be forwarded to the

message recipient(s). It contains the signal that the encapsulated HTTP message is

encrypted using the RSA encryption algorithm with the public-key available at the

URL identified by the certificate attribute. The corresponding private-key should

be used by the recipient to decrypt the message in order to make it meaningful.

7.4 SIGNING HTTP MESSAGE

Suppose that Bob’s task server has received the encrypted HTTP request from

Alice, decrypted it using its private-key and performed the request. Now Bob’s server

Fig. 15. Public-Key Encryption
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is willing to send the response back to Alice using the HTTP Mailbox as illustrated

in Code 10. But Bob’s server wants to sign the response so that Alice is sure that

the response indeed came from Bob’s server. In order to do so, Bob’s server will

use its private-key to sign the HTTP response message and advertise corresponding

public-key.

Code 15. Signing HTTP Message

1 > POST /hm/http://example.org/alice HTTP/1.1
2 > Host: example.net
3 > HM-Sender: http://example.com/tasks
4 > Content-Type: message/http
5 > HM-Forward-Encoding: rsa-sign certificate=http://example.com/bob.pub
6 > Content-Length: 19
7 >
8 > SIGNEDMESSAGESTREAM

Code 15 illustrates how a signed HTTP message will be sent to the HTTP Mail-

box. Code 14 Line 5 indicates that the entity is signed using the RSA and can be

decrypted using the public-key identified by the following certificate attribute.

7.5 SIGNING AND ENCRYPTING HTTP MESSAGE

Now suppose Alice wants to send an encrypted messages (as discussed in sec-

tion 7.3) but also wants to sign the HTTP message. This way she will make sure

that only Bob’s server will be able to meaningfully read the message and Bob’s server

will be sure that the request is indeed made by Alice. In order to do so, she will

first sign the HTTP message using her private-key then she will encrypt the signed

message using Bob’s public-key. Both the public-keys needs to be advertised in the

HM-Headers to indicate the signing and encryption.

Code 16. Signing and Encrypting HTTP Message

1 > POST /hm/http://example.com/tasks HTTP/1.1
2 > Host: example.net
3 > HM-Sender: http://example.org/alice
4 > Content-Type: message/http
5 > HM-Forward-Encoding: rsa-sign certificate=http://example.org/alice.pub
6 > rsa-encrypt certificate=http://example.com/bob.pub
7 > Content-Length: 48
8 >
9 > NOTMEANINGFULLYREADABLESIGNEDANDENCRYPTEDMESSAGE

Code 16 illustrates signing and encryption both together. Code 16 Lines 5-6 indi-

cates the operations performed on the message. Order of the signing and encryption

is important here because exact reverse operation required in order to meaningfully

retrieve the message. Bob’s server will first decrypt the message using its private-key
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then decrypt it again using Alice’s public-key to gain access to the original HTTP

message.

7.6 HTTP MESSAGE DIGEST

To detect the damage in the integrity of the message, a digest of the message can

be added in the HM-Headers. This digest will correspond to the content of the entity

sent to the HTTP Mailbox. If the entity is encrypted or signed then the digest will

be generated from the encrypted/signed message not from the original message.

Code 17. HTTP Message Digest

1 > POST /hm/http://example.com/tasks HTTP/1.1
2 > Host: example.net
3 > HM-Sender: http://example.org/alice
4 > Content-Type: message/http
5 > HM-Forward-Encoding: rsa-sign certificate=http://example.org/alice.pub
6 > rsa-encrypt certificate=http://example.com/bob.pub
7 > HM-Forward-Content-MD5: 4ada22b76d5dece41619f49eb97ec216
8 > Content-Length: 48
9 >

10 > NOTMEANINGFULLYREADABLESIGNEDANDENCRYPTEDMESSAGE

Code 17 Line 7 holds the MD5 digest of the message in Code 17 Line 10.

The recipient(s) can verify the integrity of the message by generating the MD5

sum of the retrieved message and comparing it with the one that was sent in the

HM-Forward-Content-MD5 header.

7.7 SUMMARY

In this chapter we discussed various attacks that may occur in HTTP Mailbox

messaging. We briefly talked about the victims of those attacks and possible preven-

tion mechanisms. We described the use of asymmetric keys for signing and encrypting

messages, then we discussed the use of a hash digest to ensure the integrity of the

message. We illustrated the use of signing, encryption, and hash digests with code

examples.
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CHAPTER 8

REFERENCE IMPLEMENTATION BENCHMARKING

A reference implementation of an HTTP Mailbox server was written in Ruby [60]

using the Sinatra [61] Web framework running on a Thin [62] Web server. Fluid-

info [63] was used to store messages and other metadata associated with them and it

was accessed using fluidinfo.rb [64] Ruby library. A copy of this code can be found

on GitHub [65].

8.1 STRESS TEST ANALYSIS

ApacheBench [12] was used for stress testing of the reference implementation.

We took digits of π to generate payloads of various sizes ranging from 1 byte to

100,000,000 bytes (≈ 100 MB). Fig. 16 shows the benchmark results of the HTTP

Mailbox server (our reference implementation) on various concurrency levels and data

sizes for Send and Retrieve requests respectively. The concurrency level is the number

of concurrent requests made by ApacheBench to the server at a given time. The Y -

axis shows the value of Mean Time Per Request (MTPR) in ms. Each data point

was generated by issuing total number of requests 10 times the concurrency level.

The time taken by each request includes round trip time of the network time from

benchmarking machine to HTTP Mailbox and message processing (which includes

several HTTP connections between HTTP Mailbox and Fluidinfo server).

Graphs in Fig. 16(a) and 16(b) show that the MTPR in both the cases decreases

as concurrency level increases. For smaller payloads (below 100 KB) the variation is

not distinguishable, but when the payloads increase from 100 KB to 1 MB, MTPR

roughly doubles. After analyzing data, we picked the 100 KB file and performed

further stress testing up to 1,000 concurrency level and observed a gradual decrease

in MTPR. With 1,000 concurrent requests, MTPR was 46 ms for POST requests

and 34 ms for GET requests, while on concurrency level 100, these values were 118

ms and 83 ms respectively. ApacheBench socket did not allow more than a thousand

open files for concurrent posting. Our implementation of HTTP Mailbox did not

allow posting 10 MB (or larger) messages. We have observed 0.0144% (12/83,300)
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(a) Send Message - POST

(b) Retrieve Message - GET

Fig. 16. Stress Test Analysis of HTTP Mailbox Using ApacheBench.

non-2xx responses (transient failures) in our benchmarking. We have also measured

the time taken by GET requests returning valid 404 Not Found responses. These
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responses took 53 ms MTPR (values ranging from 200 to 20 ms depending upon the

concurrency level).

8.2 PAGINATION ANALYSIS

The basic method of retrieving messages from the HTTP Mailbox is to start

form the most recent message in the message chain, discover the URIs of the first

and last messages in the chain, and traverse the message chain from either direction,

sequentially, one message at a time. Arbitrary message URIs are not discoverable

except from their adjacent messages in the message chain. This method may not be

suitable if there are too many messages to retrieve from a message chain as it will

take too long to access the chain sequentially, one message at a time.

The HTTP Mailbox introduces pagination in message retrieval as discussed in

section 6.4 which allows retrieval of an arbitrary batch of consecutive messages called

a page from the message chain. In this retrieval method, the client requests for a

range of messages from the message chain using the message sequence numbers. This

approach minimizes the network usage in terms of number of requests and responses,

while the amount of data transferred is roughly the same over the same number of

messages retrieved.

Fig. 17. Response Time for Various Page Sizes.
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Fig. 17 is a plot of time taken to retrieve 1,000 messages, each of size 10 KB

using basic method (one message at a time), pages of 10 messages each, and pages

of 100 messages each. The basic method requires 1,000 requests to retrieve all the

message while other two pagination methods require 100 requests and 10 requests

respectively. In our reference implementation, it took an average of 309 seconds to

retrieve 1,000 messages using basic retrieval method, while pages of 10 messages took

72 seconds and pages of 100 messages took 47 seconds to complete the retrieval of

the same 1,000 messages.

Apart from the number of retrieval requests, there are following three other factors

that affect the total time of retrieval: 1) The mechanisms of query in the Fluidinfo

store we used in our reference implementation are different for basic retrieval and

paginated retrieval, 2) The HTTP Mailbox processes the messages differently to

prepare the responses for the two retrieval methods, and 3) The size of the response

payload per request is different in the three test cases.

Basic message retrieval method does not allow parallel retrieval because the URIs

of the messages in the chain are not known in advance. While in case of paginated

retrieval, the client can request multiple pages of the chain in parallel to avoid data

size limit from the HTTP Mailbox.

8.3 SEGMENT ANALYSIS

Our reference implementation takes a round trip time of about 300 milliseconds on

average to complete one message retrieval using basic retrieval method. As illustrated

in Fig. 18, in our test on average 1.33% of the total time is consumed in the network

between the client and the HTTP Mailbox server, 1.89% is consumed in message

processing in the HTTP Mailbox, and the remaining 96.78% of the total time in

Fig. 18. Time Distribution in the HTTP Mailbox Messaging Retrieval.
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communication between the HTTP Mailbox and the Fluidinfo servers. Our naive

reference implementation makes five GET requests to the Fluidinfo server in order

to serve one basic message retrieval response. Some of these requests were required

in order to easily reset our testbed during the evaluation. These five GET requests

to Fluidinfo server can be minimized to just two GET requests that will reduce the

overall time significantly as these constitute the majority of the response time.

Fluidinfo is a third party service that requires the HTTP Mailbox test server

to make multiple API requests over HTTP. If a locally hosted data storage service

is used, it will reduce the total time significantly in both of message sending and

retrieval requests.

8.4 SUMMARY

In this chapter we described our reference implementation. We discussed various

benchmarking results including stress test of the HTTP Mailbox server for GET and

POST requests, the change in the accumulated retrieval time with pagination, and

the time taken by various segments of our implementation.

Our implementation did not show any decrease in performance under high con-

current request rate (tested upto a concurrency level of 1,000 requests at the same

time). It shows a sudden decrease in MTPR initially and a gradual decrease after

concurrency level reaches ten requests at a time. In paginated requests, retrieval

time decreases significantly for large page sizes (large number of messages per page)

unless the data size of the page exceeds the allowed limit of the HTTP Mailbox im-

plementation. In our implementation maximum time was spent in communicating

with the third party data storage service called Fluidinfo.
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CHAPTER 9

APPLICATIONS

Our implementation of the HTTP Mailbox is being utilized in some applications

for their asynchronous web communication needs. We will discuss two such applica-

tions, their goals, their working, and how they are utilizing the HTTP Mailbox for

messaging.

9.1 PRESERVE ME! APPLICATION

A Web preservation application called “Preserve Me!” uses the services of the

HTTP Mailbox heavily to fulfill its communication needs. This application is a

JavaScript add-on utility that can be added in any web page. This will add a small

“Preserve Me!” icon somewhere in the web page similar to several sharing icons (e.g.,

Tweet, Like, and +1) as illustrated in Fig. 19.

When that icon is clicked, it looks for one or more link tags with

rel=resourcemap in the page. If the href attribute of those links points to a valid

Atom ResourceMap [42] files then it pops up a window as shown in Fig. 20. This win-

dow gives insight into the ResourceMap and aggregated resources [42] and also allows

users to exchange messages with other ResourceMaps and connect them via family

and friend relationships. These message exchanges and relationships allow human-

assisted preservation of aggregated resources and aids in their long term preservation.

The Preserve Me! application sends various messages including: friendship re-

quest, copy request, and copy service announcements. Codes 18 and 19 illustrate

a typical friendship request message completing its lifecycle using HTTP Mailbox

service. An aggregation (collection of resources) represented by a ResourceMap goes

through a process of unsupervised creation of Small World Networks [66, 67] to se-

lect various other aggregations as friends. To complete the friendship it requires

the other aggregation to add a link element in its ResourceMap, pointing back to

the requester. To make that change, it prepares an XML-Patch [68] file as illus-

trated in Code 18 Lines 12-19 and sends an HTTP PATCH request as illustrated in

Code 18 Lines 7-19 to the chosen friend. Because of the client and server side lim-

itations, this request might not be directly possible so it wraps the HTTP PATCH
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Fig. 19. “Preserve Me!” Icon in a Splash Page.

Message in an HTTP POSTMessage and sends it to the HTTPMailbox as illustrated

in Code 18 Lines 1-19.

Code 18. Sending Add Friend Request

1 > POST /hm/http://flickr.cs.odu.edu/rems/flickr-adittel-8162004738.xml HTTP/1.1
2 > Host: hm.cs.odu.edu
3 > Content-Type: message/http
4 > HM-Sender: http://arxiv.cs.odu.edu/rems/arxiv-0801-4807v1.xml
5 > Content-Length: 412
6 >
7 > PATCH /rems/flickr-adittel-8162004738.xml HTTP/1.1
8 > Host: flickr.cs.odu.edu
9 > Content-Type: application/patch-ops-error+xml

10 > Content-Length: 270
11 >
12 > <?xml version="1.0" encoding="UTF-8"?>
13 > <diff>
14 > <add sel="entry">
15 > <link rel="http://wsdl.cs.odu.edu/uswdo/terms/friend"
16 > href="http://arxiv.cs.odu.edu/rems/arxiv-0801-4807v1.xml"
17 > title="Automatic Text Area Segmentation in Natural Images"/>
18 > </add>
19 > <diff>
20
21 < HTTP/1.1 201 Created
22 < Server: HTTP Mailbox
23 < Location: http://hm.cs.odu.edu/hm/id/5ecb44e0-859c-403f-9184-65e3a086ea2b

When the “Preserve Me!” window of the receiving aggregation is opened, it checks

its Mailbox as illustrated in Code 19. It then shows the friendship request (and any
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other messages, if available) as shown in Fig. 20. If that message is applied then the

friendship link will be added in the ResourceMap of the receiving aggregation.

Code 19. Retrieving Add Friend Request

1 > GET /hm/http://flickr.cs.odu.edu/rems/flickr-adittel-8162004738.xml HTTP/1.1
2 > Host: hm.cs.odu.edu
3 > Content-Type: message/http
4
5 < HTTP/1.1 200 OK
6 < Server: HTTP Mailbox
7 < Content-Type: message/http
8 < Date: Thu, 13 Dec 2012 15:34:24 GMT
9 < Memento-Datetime: Thu, 13 Dec 2012 05:15:55 GMT

10 < Via: sent by 68.225.179.9
11 < on behalf of http://arxiv.cs.odu.edu/rems/arxiv-0801-4807v1.xml,
12 < delivered by http://hm.cs.odu.edu/hm/
13 < Link: <http://hm.cs.odu.edu/hm/http://flickr.cs.odu.edu/rems/
14 flickr-adittel-8162004738.xml>; rel="current",
15 < <http://hm.cs.odu.edu/hm/id/aebed6e9-e8ac-4051-9970-cc87fde2a549>;
16 rel="first",
17 < <http://hm.cs.odu.edu/hm/id/5ecb44e0-859c-403f-9184-65e3a086ea2b>;
18 rel="last self",
19 < <http://hm.cs.odu.edu/hm/id/85addc19-9358-46c7-a836-74b5161b2986>;
20 rel="previous"
21 < Content-Length: 412
22 <
23 < PATCH /rems/flickr-adittel-8162004738.xml HTTP/1.1
24 < Host: flickr.cs.odu.edu
25 < Content-Type: application/patch-ops-error+xml
26 < Content-Length: 270
27 <
28 < <?xml version="1.0" encoding="UTF-8"?>
29 < <diff>
30 < <add sel="entry">
31 < <link rel="http://wsdl.cs.odu.edu/uswdo/terms/friend"
32 < href="http://arxiv.cs.odu.edu/rems/arxiv-0801-4807v1.xml"
33 < title="Automatic Text Area Segmentation in Natural Images"/>
34 < </add>
35 < <diff>

9.2 PRESERVE ME! VIZ APPLICATION

To visualize the network of web objects and working of the “Preserve Me!” ap-

plication, we have created another tool called “Preserve Me! Viz” (Fig. 21). This

interactive tool allows the user to visualize relationships and communication among

various digital objects in real time or replay recorded sessions.

Digital objects are represented as nodes, their relationships are represented as

color-coded directed edges, and communication or data flow is animated from the

origin node the target node then disappears. Every node contains a thumbnail of

the digital object (splash page) that has a color-coded stroke indicating the host it

belongs to. Hovering over a node highlights the related nodes and connections while

clicking on a node reveals further details of the digital object (Fig. 21(b)).

The “Preserve Me! Viz” tool starts with a screen having video player-like canvas

and controls on it. It allows the user to select the live stream or a pre-recorded session

stream. Then it gives options to filter various types of nodes, edges, or messages

from animation (Fig. 21(a)). Once the play button is clicked, it starts rendering

every event sequentially. A progress bar is shown in recorded sessions that allows
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Fig. 20. “Preserve Me!” Application Window.
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seeking at any frame and play the animation from there. The canvas is interactive

which allows zooming, panning, and relocating nodes. This tool also allows the user

to change the background of the canvas, making the canvas full-screen, and capture

the current state of the graph and save it as an Scalable Vector Graphics (SVG) [69]

file.

Code 20. JSON Data for Visualization

1 [{
2 "timestamp": 1360795466.123,
3 "type": "Node",
4 "id": "http://radiolab.cs.odu.edu/rems/radiolab-adding-memory.xml",
5 "title": "Adding Memory",
6 "link": "http://radiolab.cs.odu.edu/radiolab-adding-memory.html",
7 "group": "radiolab",
8 "role": "parent",
9 "family": "tag:uswdo.cs.odu.edu,2012-11-01:radiolab-adding-memory",

10 "beta": 0.3,
11 "gamma": 0.2,
12 "aggregationSize": 3,
13 "cc": 0.35,
14 "apl": 1.27,
15 "category": "NewNode"
16 }, {
17 "timestamp": 1360795469.132,
18 "type": "Edge",
19 "id": "info:radiolab.cs.odu.edu/radiolab-adding-memory/friend/flickr.cs.odu.edu/flickr-clas-8161932383",
20 "from": "http://radiolab.cs.odu.edu/rems/radiolab-adding-memory.xml",
21 "to": "http://flickr.cs.odu.edu/rems/flickr-clas-8161932383.xml",
22 "cc": 0.77,
23 "apl": 1.49,
24 "category": "FriendAdded"
25 }, {
26 "timestamp": 1360795475.234,
27 "type": "Message",
28 "id": "info:AddFamilySent/at/1360795475.234",
29 "from": "http://radiolab.cs.odu.edu/rems/radiolab-adding-memory.xml",
30 "to": "tag:uswdo.cs.odu.edu,2012-11-01:radiolab-adding-memory",
31 "via": "http://ws-dl-02.cs.odu.edu:10101/hm",
32 "category": "AddFamilySent"
33 }]

To record the sessions, we use a JavaScript Object Notation (JSON) [70] encoded

file as illustrated in Code 20 and record every node, edge, and message sequentially

as they occur. To visualize the “Preserve Me!” live, we utilize the HTTP Mailbox.

We send each event as it occurs to the HTTP Mailbox with the URI of the “Preserve

Me! Viz” application as the recipient. When the live stream is selected (as opposed

to the recorded event-log files) in the “Preserve Me! Viz”, it reads the events from

the HTTP Mailbox and animates them on the canvas. Capturing only the recent

messages from the HTTP mailbox is not sufficient to bring the canvas to a stage

where all the nodes and edges are rendered to represent the current state of the

testbed of the “Preserve Me!” application. “Preserve Me! Viz” needs to retrieve

all the messages from the start in the same order to render them properly. This

means if the “Preserve Me!” application is running from sometime before “Preserve

Me! Viz” was started, then it will take some time before it reaches to the current

state of the testbed. To overcome this delay, we send batched messages periodically

to another recipient using the HTTP Mailbox. We realized that only nodes and
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(a) Start by Selecting a Stream and Applying Filters

(b) Reveal Details of a Node

Fig. 21. “Preserve Me! Viz” Application Window.
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edges are relevant to construct the graph, messaging among the nodes is not (as

it is volatile). Hence we only include node and edge related events in the batched

message. Now, when live stream is selected in the “Preserve Me! Viz” application, it

first fetches all the batched messages sequentially from the HTTP Mailbox and sets

the canvas then starts fetching the live messages from there.

To visualize a network in real-time, push notifications can be used. But the HTTP

Mailbox has a significant advantage over push notification here. The HTTP Mailbox

keeps the record of all the events (in the form of messages) in chronological order that

can be replayed later. Also, when the visualizer starts, it needs the current state of

the graph that may not be available in push notifications, unless it sends the entire

state of the graph every time instead of individual events. On the other hand, using

the HTTP Mailbox service, we can fetch all the previous events from the beginning

and create the network graph in the visualizer that represents the current state,

when the visualizer starts. From that point, it keeps checking the HTTP Mailbox

periodically for any new messages. As soon as a new event message arrives in the

HTTP Mailbox, the visualizer can reflect that on the canvas.

The “Preserve Me! Viz” application uses VivaGraphJS [71], a JavaScript-based

graph drawing library. We developed the timeline animation, player interface, and

specified the data format used to animate the visualization.

9.3 SUMMARY

In this chapter we described our two web applications, “Preserve Me!” and “Pre-

serve Me! Viz” that are using the HTTP Mailbox service. We described the working

of these applications and how they are using the HTTP Mailbox for their communi-

cation needs.

“Preserve Me!” is a human-assisted web preservation application. This applica-

tion was the reason that caused us to explore various browser-based web communi-

cation options and finally gave birth to the HTTP Mailbox.

“Preserve Me! Viz” is a real-time interactive network visualization tool that

shows nodes of a network, their connections, and communications. It reflects the

changes in the network as they occur. This tool was built to visualize the network of

web objects created by the “Preserve Me!” application. It uses the HTTP Mailbox

for live visualization, where all the events are being sent from “Preserve Me!”.
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CHAPTER 10

EVALUATION

We perform both qualitative and quantitative evaluations of the HTTP Mail-

box against various other web communication options. In qualitative evaluation we

compare various features of communication like reliability and scale. In quantitative

evaluation we formulate various quantities like availability and network usage.

10.1 FEATURE COMPARISON

Table VII gives a quick overview of various features among various communication

systems discussed in chapters 2, 3, and 5. AMQP and the HTTP Mailbox are the two

overall winners over the set of features listed in the table. While AMQP is a general

purpose enterprise communication system, it is not suitable for web communication

especially using web browsers. On the other hand, the HTTP Mailbox is primarily

made with RESTful web communication in mind.

TABLE VII
Feature Comparison of Various Messaging Systems

Feature Linda HTTP Relay
HTTP

EMS Bleeps HTTP
Mailbox

Multicast Yes No No Yes Yes Yes

Non-Blocking Yes No No Yes Yes Yes

Reliability Yes Yes Yes Yes No Yes

Message Size Any Any Any Any Short Any

Browser Support No Limited Full No Full Full

Transport Shared Memory Web Web Web Web Web

10.2 AVAILABILITY

Suppose that a sender has to send HTTP requests to R number of recipients

where an immediate response from the recipients is not required but the sender has

to make sure that every recipient will eventually get the message. At any given time,
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a random subset of total recipients are unreachable but every recipient is mostly

available over a period of time T .

In the HTTP communication, it may take a period of time as long as T to

successfully communicate with all the recipients and the sender has to make frequent

attempts over time T. On the other hand, in the HTTP Mailbox communication,

sender can send the message(s) to the HTTP Mailbox whose availability is much

higher (assumed to be highly reliable) than individual recipients. The responsibility

of eventual delivery of messages is then off-loaded to the HTTP Mailbox and the

sender can proceed without being blocked.

10.3 NETWORK USAGE

The total number of HTTP cycles C (where a cycle is combination of HTTP

Request and Response) required to send M messages to a group of R recipients,

assuming that there is no transient failure (or equally probable in all cases):

HTTP messaging:

C = M ∗R (1)

HTTP Mailbox messaging (where recipients only make attempts after sender has

successfully sent the message to HTTP Mailbox.)

C = M ∗ (R + 1) (2)

If these M messages are sent in N (≤ M) batches using application/http [2]

MIME type then the cost of HTTP Mailbox communication will reduce further while

cost of HTTP communication will remain the same.

C = N ∗ (R + 1) (3)

In the worst case, individual unicast messages will cost twice for HTTP Mailbox

communication as compared to HTTP. For larger group messaging scenarios it will

cost roughly the same as HTTP while message pipelining will drop the cost of com-

munication by a factor derived from the ratio of number of messages to the number

of batches. For simplicity, we have ignored the communication cost introduced by

Pull [34] attempts made by recipients before a new message arrived in the HTTP
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Mailbox for them, which is likely to happen because recipients are unaware of the

sender’s state.

10.4 SUMMARY

In this chapter we evaluated the HTTP Mailbox qualitatively and quantitatively

against various other communication systems. These evaluations show that the

HTTP Mailbox is the best option for browser-based non-blocking RESTful com-

munication. Our evaluation also demonstrates that the HTTP Mailbox can save

significant amount of network usage and time in group communication and batched

messaging from sender’s perspective as it shifts the responsibility of message retrieval

to the recipient.
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CHAPTER 11

FUTURE WORK

For access control, security, privacy, integrity, and authenticity [72], we are con-

sidering techniques like OAuth [55], public-key encryption [73], and hashing [74, 75].

We have discussed these techniques in chapter 7 but did not implement and eval-

uate them. Data storage services other than Fluidinfo should also be evaluated to

compare robustness and response time in each case. We are also planning to add

destructive-read (cf. Linda’s “in” function) and message access log features in the

HTTP Mailbox and evaluate how they affect the utility and performance of the

system.

We would like to explore the possibility of how multiple mailboxes can work

together to improve fault-tolerance and availability. For this purpose, shared message

store, peer-to-peer message store, or hybrid storage system can be used.

In the case of shared message store, there will be one message store and sev-

eral instances of the HTTP Mailbox will be connected to it. All instances of the

HTTP mailbox will be storing their messages in (and accessing them from) the same

shared store. In this centralized message store system, the message store can be the

bottleneck and single point of failure.

We would also like to explore the possibility of a globally distributed peer-to-peer

key-value based data storage system to power the HTTP Mailbox. This will allow

the HTTP Mailbox to utilize a single shared data store across all the instances of

the HTTP Mailbox rather than having a private message store per instance. In this

case the HTTP Mailbox will work as an API gateway for the shared message storage

to store and retrieve messages. To optimize the search time and storage space, these

message stores may archive old messages and only maintain recent messages over the

peer-to-peer network.

A hybrid message storage system can be designed by allowing individual HTTP

Mailbox instances to have their own independent storage and periodically exchange

messages in bulk with other message stores to synchronize.
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CHAPTER 12

CONCLUSIONS

Originally the Web was envisioned as a read-write system for the web resources.

But this vision was only partially embraced after the popularity of Web 2.0. Tradi-

tionally, general web services did not utilize REST and mainly relied on the GET and

POST methods of HTTP in an RPC style to perform all the CRUD operations. Until

recently, the Web was mainly navigated by humans using web browsers and clicking

on hyperlinks or submitting HTML forms. Clicking on a link is always a GET re-

quest while HTML forms only allow GET and POST methods. Recently, several web

frameworks/libraries have started supporting RESTful web services through APIs.

To support HTTP methods other than GET and POST in browsers, these frame-

works have used hidden HTML form fields as a workaround to convey the desired

HTTP method to the server application. The server-side web application then infers

the desired HTTP method based on special parameter values. Unavailability of the

servers is another factor that affects the communication. Because of the stateless

and synchronous nature of HTTP, a client must wait for the server to be available

to perform the task and respond to the request. Browser-based communication also

suffers from cross-origin restrictions for security reasons.

In an effort of preserving web objects, we needed a messaging system that can

be used reliably on the scale of the Web. We explored various possibilities including

Linda, HTTP, and Bleeps but none of them fit our needs. Hence we have developed

a store and forward model of HTTP messaging called HTTP Mailbox that remains

RESTful and provides asynchronous (non-blocking) message sending and on demand

message retrieval facility between sender and recipients. It also provides message

pipelining and group messaging (multicast) facilities that save network usage and

time.

Based on our model, we have implemented an HTTP Mailbox and tested its

robustness and performance. Benchmarking our reference implementation gave us

very reliable and time efficient results even on high concurrency levels within a data

size limit. Unexpected failure rate was as low as 0.0144% over more than 83,000 send

and retrieve requests in our benchmarking.
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We have successfully removed the client and server side barriers in using full range

of HTTP methods in REST style. We have utilized our implementation of the HTTP

Mailbox in the “Preserve Me!” and the “Preserve Me! Viz” applications. We have

also made the code of our implementation available on GitHub [65].
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APPENDIX A

ENHANCED BNF

HM-Request-Path = HM-Base ( http_URL | token )
HM-Base = absoluteURI | abs_path
HM-Body = HTTP-message
Send-Request = "POST" SP HM-Request-Path

SP HTTP-Version CRLF
*( HM-req-header CRLF ) CRLF
HM-Body

Send-Response = Response
Retrieve-Request = "GET" SP HM-Request-Path

SP HTTP-Version CRLF
*( HM-req-header CRLF ) CRLF

Retrieve-Response = Status-Line
*( HM-res-header CRLF ) CRLF
[ ( HM-Body | message-body ) ]

HM-Header = HM-res-header | HM-req-header
HM-req-header = ( Sender-header | general-header

| request-header | entity-header )
HM-res-header = ( Via-header | Link

| general-header | Memento-Datetime
| response-header | entity-header )

Via-header = "Via" ":" "sent by"
SP (IP | IPv6 | Host)
SP "on behalf of" SP absoluteURI
SP "delivered by" SP absoluteURI

Sender-header = "HM-Sender" ":" absoluteURI
Memento-header = "Memento-Datetime" ":" HTTP-date

Link is defined in RFC 5988 [51], Memento-Datetime is defined in [44] which

uses preferred fixed-width format of HTTP-date, IP is defined in RFC 791 [76], IPv6

is defined in RFC 2460 [77], and remaining terms are inherited from RFC 2616 [2]

unless defined here.
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APPENDIX B

CODE SAMPLES

Code 21. Atom XML Based Sample ResourceMap

1 <?xml version="1.0" encoding="UTF-8"?>
2 <entry xmlns="http://www.w3.org/2005/Atom"
3 xmlns:oreatom="http://www.openarchives.org/ore/atom/"
4 xmlns:dcterms="http://purl.org/dc/terms/"
5 xmlns:dc="http://purl.org/dc/elements/1.1/"
6 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
7 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
8 xmlns:ore="http://www.openarchives.org/ore/terms/"
9 xmlns:foaf="http://xmlns.com/foaf/0.1/"

10 xmlns:grddl="http://www.w3.org/2003/g/data-view#"
11 xmlns:relationship="http://purl.org/vocab/relationship/"
12 xmlns:usw="http://wsdl.cs.odu.edu/uswdo/terms/"
13 grddl:transformation="http://www.openarchives.org/ore/atom/atom-grddl.xsl">
14 <id>tag:uswdo.cs.odu.edu,2012-11-01:arxiv-0801-4807v1</id>
15 <link rel="alternate"
16 type="text/html"
17 href="http://arxiv.cs.odu.edu/arxiv-0801-4807v1.html" />
18 <link rel="self"
19 type="application/atom+xml"
20 href="http://arxiv.cs.odu.edu/rems/arxiv-0801-4807v1.xml" />
21 <link rel="edit"
22 type="application/atom+xml"
23 href="http://cetus.cs.odu.edu:10123/remmod/http://arxiv.cs.odu.edu/rems/arxiv-0801-4807v1.xml" />
24 <link rel="http://wsdl.cs.odu.edu/uswdo/terms/copy"
25 type="application/atom+xml"
26 href="http://cetus.cs.odu.edu:10123/remcopy/http://arxiv.cs.odu.edu/" />
27 <link rel="http://wsdl.cs.odu.edu/uswdo/terms/httpmailbox#self"
28 href="http://cetus.cs.odu.edu:10123/ms/http://arxiv.cs.odu.edu/rems/arxiv-0801-4807v1.xml"
29 usw:last-checked="" />
30 <link rel="http://wsdl.cs.odu.edu/uswdo/terms/httpmailbox#all"
31 href="http://cetus.cs.odu.edu:10123/ms/all"
32 usw:last-checked="" />
33 <link rel="http://wsdl.cs.odu.edu/uswdo/terms/httpmailbox#family"
34 href="http://cetus.cs.odu.edu:10123/ms/tag:uswdo.cs.odu.edu,2012-11-01:arxiv-0801-4807v1"
35 usw:last-checked="" />
36 <link rel="http://www.openarchives.org/ore/terms/describes"
37 href="http://arxiv.cs.odu.edu/rems/arxiv-0801-4807v1.xml#aggregation" />
38 <source>
39 <author>
40 <name>ODU WSDL ReM Generator</name>
41 <uri>http://ws-dl-02.cs.odu.edu/</uri>
42 </author>
43 </source>
44 <published>2012-12-09T23:19:38-05:00</published>
45 <updated>2012-12-09T23:19:38-05:00</updated>
46 <link
47 rel="license"
48 type="application/rdf+xml"
49 href="http://creativecommons.org/licenses/by-nc/2.5/rdf" />
50 <rights>
51 This Resource Map is available under the Creative Commons Attribution-Noncommercial 2.5 Generic license
52 </rights>
53 <title>Automatic Text Area Segmentation in Natural Images</title>
54 <author>
55 <name>Syed Ali Raza Jafri</name>
56 </author>
57 <author>
58 <name>Mireille Boutin</name>
59 </author>
60 <author>
61 <name>Edward J. Delp</name>
62 </author>
63 <category term="http://www.openarchives.org/ore/terms/Aggregation"
64 label="Aggregation"
65 scheme="http://www.openarchives.org/ore/terms/" />
66 <category term="2008-01-31T01:46:32+00:00"
67 scheme="http://www.openarchives.org/ore/atom/created" />
68 <category term="2008-01-31T01:46:32+00:00"
69 scheme="http://www.openarchives.org/ore/atom/modified" />
70 <category term="3"
71 scheme="http://wsdl.cs.odu.edu/uswdo/terms/preservationCopiesMinimumNumber" />
72 <category term="5"
73 scheme="http://wsdl.cs.odu.edu/uswdo/terms/preservationCopiesMaximumNumber" />
74 <category term="0.5"
75 scheme="http://wsdl.cs.odu.edu/uswdo/terms/beta" />
76 <category term="0.5"
77 scheme="http://wsdl.cs.odu.edu/uswdo/terms/gamma" />
78 <link rel="http://wsdl.cs.odu.edu/uswdo/terms/family#parent"
79 type="application/atom+xml"
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80 title="Automatic Text Area Segmentation in Natural Images"
81 href="http://arxiv.cs.odu.edu/rems/arxiv-0801-4807v1.xml" />
82 <link rel="http://www.openarchives.org/ore/terms/aggregates"
83 type="text/html"
84 title="Automatic Text Area Segmentation in Natural Images"
85 href="http://arxiv.cs.odu.edu/arxiv-0801-4807v1.html" />
86 <link rel="http://www.openarchives.org/ore/terms/aggregates"
87 type="text/html"
88 title="[0801.4807v1] Automatic Text Area Segmentation in Natural Images"
89 href="http://arxiv.org/abs/0801.4807v1"
90 usw:preservation-mode="skip" />
91 <link rel="http://www.openarchives.org/ore/terms/aggregates"
92 type="application/pdf"
93 title="[PDF] Automatic Text Area Segmentation in Natural Images"
94 href="http://arxiv.org/pdf/0801.4807v1"
95 usw:preservation-mode="skip" />
96 <link rel="http://www.openarchives.org/ore/terms/aggregates"
97 type="application/x-tgz"
98 title="[Source] Automatic Text Area Segmentation in Natural Images"
99 href="http://arxiv.org/e-print/0801.4807v1"

100 usw:preservation-mode="skip" />
101 <link rel="http://wsdl.cs.odu.edu/uswdo/terms/friend"
102 href="http://arxiv.cs.odu.edu/rems/arxiv-0704-3647v1.xml"
103 title="Evaluating Personal Archiving Strategies for Internet-based Information" />
104 </entry>
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Code 22. Revision History of Wiki-based Mailbox of DO1

1 $ curl -i -G -d "format=xml&action=query&titles=Do1&prop=revisions&rvprop=ids|timestamp|content&rvlimit=20" \
2 > http://resourcemap.wikia.com/api.php
3
4 HTTP/1.1 200 OK
5 Server: Apache
6 X-Content-Type-Options: nosniff
7 X-Frame-Options: DENY
8 Cache-Control: max-age=3600, s-maxage=3600, public
9 Content-Type: text/xml; charset=utf-8

10 X-Cacheable: YES
11 Content-Length: 4175
12 Accept-Ranges: bytes
13 Date: Thu, 01 Aug 2013 15:19:36 GMT
14 Connection: keep-alive
15 X-Served-By: cache-s24-SJC, cache-at52-ATL
16 X-Cache: HIT, HIT
17 X-Cache-Hits: 1, 1
18 X-Timer: S1375369946.303683996,VS0,VS35,VE36,VE430236
19 Vary: Accept-Encoding
20 Set-Cookie: wikia_beacon_id=3zwg7OUEb6; domain=.wikia.com; path=/; expires=Tue, 28 Jan 2014 15:19:36 GMT;
21 Set-Cookie: Geo={%22city%22:%22FIXME%22%2C%22country%22:%22US%22%2C%22continent%22:%22NA%22}; path=/
22 X-Age: 430
23
24 <?xml version="1.0"?>
25 <api>
26 <query>
27 <pages>
28 <page pageid="2040" ns="0" title="Do1">
29 <revisions>
30 <rev revid="139816" parentid="139815" timestamp="2012-07-31T21:00:14Z" xml:space="preserve">
31 http://uswdo1.cs.odu.edu/uswdo/do/do50001.xml http://uswdo1.cs.odu.edu/uswdo/do/do1.xml friendship
32 </rev>
33 <rev revid="139815" parentid="139813" timestamp="2012-07-31T20:59:56Z" xml:space="preserve">BEGIN</rev>
34 <rev revid="139813" parentid="139809" timestamp="2012-07-31T20:52:56Z" xml:space="preserve">
35 http://uswdo1.cs.odu.edu/uswdo/do/do50001.xml http://uswdo1.cs.odu.edu/uswdo/do/do1.xml friendship
36 </rev>
37 <rev revid="139809" parentid="139804" timestamp="2012-07-31T20:52:20Z" xml:space="preserve">BEGIN</rev>
38 <rev revid="139804" parentid="139801" timestamp="2012-07-31T20:29:53Z" xml:space="preserve">
39 http://uswdo1.cs.odu.edu/uswdo/do/do50001.xml http://uswdo1.cs.odu.edu/uswdo/do/do1.xml friendship
40 </rev>
41 <rev revid="139801" parentid="139797" timestamp="2012-07-31T20:29:33Z" xml:space="preserve">BEGIN</rev>
42 <rev revid="139797" parentid="139796" timestamp="2012-07-31T20:07:51Z" xml:space="preserve">
43 http://uswdo1.cs.odu.edu/uswdo/do/do50001.xml http://uswdo1.cs.odu.edu/uswdo/do/do1.xml friendship
44 </rev>
45 <rev revid="139796" parentid="139794" timestamp="2012-07-31T20:07:05Z" xml:space="preserve">BEGIN</rev>
46 <rev revid="139794" parentid="139793" timestamp="2012-07-31T19:55:37Z" xml:space="preserve">
47 http://uswdo1.cs.odu.edu/uswdo/do/do50009.xml http://uswdo1.cs.odu.edu/uswdo/do/do1.xml friendship
48 </rev>
49 <rev revid="139793" parentid="139792" timestamp="2012-07-31T19:55:28Z" xml:space="preserve">
50 http://uswdo4.cs.odu.edu/uswdo/do/do50008.xml http://uswdo1.cs.odu.edu/uswdo/do/do1.xml friendship
51 </rev>
52 <rev revid="139792" parentid="139791" timestamp="2012-07-31T19:55:09Z" xml:space="preserve">
53 http://uswdo3.cs.odu.edu/uswdo/do/do50007.xml http://uswdo1.cs.odu.edu/uswdo/do/do1.xml friendship
54 </rev>
55 <rev revid="139791" parentid="139790" timestamp="2012-07-31T19:54:40Z" xml:space="preserve">
56 http://uswdo2.cs.odu.edu/uswdo/do/do50006.xml http://uswdo1.cs.odu.edu/uswdo/do/do1.xml friendship
57 </rev>
58 <rev revid="139790" parentid="139789" timestamp="2012-07-31T19:54:24Z" xml:space="preserve">
59 http://uswdo1.cs.odu.edu/uswdo/do/do50005.xml http://uswdo1.cs.odu.edu/uswdo/do/do1.xml friendship
60 </rev>
61 <rev revid="139789" parentid="139788" timestamp="2012-07-31T19:54:16Z" xml:space="preserve">
62 http://uswdo4.cs.odu.edu/uswdo/do/do50004.xml http://uswdo1.cs.odu.edu/uswdo/do/do1.xml friendship
63 </rev>
64 <rev revid="139788" parentid="139787" timestamp="2012-07-31T19:54:05Z" xml:space="preserve">
65 http://uswdo2.cs.odu.edu/uswdo/do/do50002.xml http://uswdo1.cs.odu.edu/uswdo/do/do1.xml friendship
66 </rev>
67 <rev revid="139787" parentid="139786" timestamp="2012-07-31T19:53:49Z" xml:space="preserve">
68 http://uswdo3.cs.odu.edu/uswdo/do/do50003.xml http://uswdo1.cs.odu.edu/uswdo/do/do1.xml friendship
69 </rev>
70 <rev revid="139786" parentid="139784" timestamp="2012-07-31T19:53:33Z" xml:space="preserve">
71 http://uswdo1.cs.odu.edu/uswdo/do/do50001.xml http://uswdo1.cs.odu.edu/uswdo/do/do1.xml friendship
72 </rev>
73 <rev revid="139784" parentid="139775" timestamp="2012-07-31T19:51:46Z" xml:space="preserve">BEGIN</rev>
74 <rev revid="139775" parentid="139773" timestamp="2012-07-31T19:31:11Z" xml:space="preserve">
75 http://uswdo1.cs.odu.edu/uswdo/do/do50001.xml http://uswdo1.cs.odu.edu/uswdo/do/do1.xml friendship
76 </rev>
77 <rev revid="139773" parentid="139764" timestamp="2012-07-31T19:29:57Z" xml:space="preserve">BEGIN</rev>
78 </revisions>
79 </page>
80 </pages>
81 </query>
82 <query-continue>
83 <revisions rvstartid="139764" />
84 </query-continue>
85 </api>
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APPENDIX C

CORS RELATED BROWSER BUG

In order to allow the clients to access response headers in a CORS request, the

remote server must send Access-Control-Expose-Headers header in the response.

This header contains a coma separated list of response headers that will be exposed

to the client. If a browser makes an Ajax request, the “XMLHttpRequests” object

has a method “getAllResponseHeaders()” that should return all the exposed headers.

At the time of writing many popular web browsers have buggy implementation of this

method and they do not honor Access-Control-Expose-Headers [78, 79]. These

browsers still return expected result if “getResponseHeader(name)” method is called

to query individual response headers.

Code 23. CORS Response Headers Using cURL

$ curl -I -H "Origin: example.com" http://hm.cs.odu.edu/hm/http://example.com/tasks
HTTP/1.1 200 OK
Server: HTTP Mailbox
Content-type: message/http
Date: Mon, 27 May 2013 16:35:24 GMT
Memento-Datetime: Mon, 27 May 2013 16:32:17 GMT
Via: sent by 128.82.4.75 on behalf of http://example.org/alice, delivered by http://hm.cs.odu.edu/hm/
Link: <http://hm.cs.odu.edu/hm/http://example.com/tasks>; rel="current",
<http://hm.cs.odu.edu/hm/id/4a571ae3-970e-4226-9ad6-3d4cbd02be3a>; rel="self",
<http://hm.cs.odu.edu/hm/id/3475e58a-9458-496d-a90e-f31b24ef8e04>; rel="first",
<http://hm.cs.odu.edu/hm/id/4a571ae3-970e-4226-9ad6-3d4cbd02be3a>; rel="last",
<http://hm.cs.odu.edu/hm/id/3475e58a-9458-496d-a90e-f31b24ef8e04>; rel="previous"
Content-Length: 43
Access-Control-Allow-Origin: example.com
Access-Control-Allow-Methods: GET, POST, OPTIONS
Access-Control-Expose-Headers: Link, Via, Date, Memento-Datetime
Access-Control-Max-Age: 1728000
Access-Control-Allow-Credentials: true
Vary: Origin
Connection: keep-alive

$

To understand this browser bug and its consequences we will see an exam-

ple. Code 23 shows CORS response headers of a URI from the HTTP Mail-

box using cURL. In this illustration Access-Control-* headers are CORS spe-

cific. The Access-Control-Expose-Headers header tells that Link, Via, Date, and

Memento-Datetime response headers should be accessible to the clients.

Now we will attempt to access the headers of this resource from Firefox browser

(version 20.0) using Firebug (a developer utility add-on for Firefox). Fig. 22(a)

illustrates an Ajax GET request on the same URI as in the cURL example above.
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(a) Firefox (Version 20.0)

(b) Google Chrome(Version 26.0)

Fig. 22. Accessing CORS Response Headers.

Once the response from the server is loaded we attempt to print all the response

headers. We expect to see the name value pairs of all the exposed response headers.

Firefox returns an empty string because of the bug in the implementation. Next, we

attempt to access an individual response header (in this illustration it is Via header)

and we get expected response.

Now we will run the same experiment in Google Chrome browser (version 26.0)

which has got the bug fixed. Fig. 22(b) illustrates the successful attempt to print

all the exposed response headers at once as well as individual response headers by

name.

Retrieving the chain of messages from the HTTP Mailbox is dependent upon

Link header. If for some reason a client cannot access that, it will not be able to

identify the next (or previous) message in the chain hence, it will fail to fetch the

messages.
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A workaround to this bug is to override the “getAllResponseHeaders()” method

for CORS

requests. First of all use getResponseHeader(Access-Control-Expose-Headers)

and parse the returned value to get a list of all exposed headers. Add this list to the

simple response headers and then query for each of the headers from the list using

getResponseHeader(name) and concatenate the result. return this concatenated

result from overridden “getAllResponseHeaders()” method.

As we have seen in the illustrations that exposed headers can always be re-

trieved individually by name then this bug should not be an issue. It turns out

that jQuery [80] overrides the default “getAllResponseHeaders()” and “getRespon-

seHeader(name)” methods in a way that “getResponseHeader(name)” method is de-

rived from the outcome of “getAllResponseHeaders()”. This is an issue if the client

is making Ajax CORS requests using jQuery in buggy browsers. In that case the

client will not get the appropriate values of individual headers by name.

A rather simpler but not generic patch to jQuery (tested in version 1.8.1) is

illustrated below which assumes that the client knows a list of expected response

headers that are exposed.

// Firefox CORS bug fix in jQuery-1.8.1
var _super = $.ajaxSettings.xhr;
$.ajaxSetup({
xhr: function() {
var xhr = _super();
var getAllResponseHeaders = xhr.getAllResponseHeaders;
xhr.getAllResponseHeaders = function() {

var allHeaders = getAllResponseHeaders.call(xhr);
if (allHeaders) {
return allHeaders;

}
allHeaders = "";
var conHeader = function(i, header_name) {
if (xhr.getResponseHeader(header_name)) {
allHeaders += header_name + ": " + xhr.getResponseHeader( header_name ) + "\n";

}
};
$(["Cache-Control", "Content-Language", "Content-Type", "Expires", "Last-Modified", "Pragma"]).each(conHeader);
$(["Location", "Link", "Via", "Date", "Memento-Datetime"] ).each(conHeader);
return allHeaders;

};
return xhr;

}
});
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