
MTECS-2008

Document Compression and Ciphering

Using Pattern Matching Technique

Sawood Alam

Department of Computer Engineering, Jamia Millia Islamia, New Delhi, India,

ibnesayeed@gmail.com

Abstract—This paper describes a method of document

compression and ciphering using pattern matching technique.

The idea behind this technique is to find out longest common

pattern segments of one document in the other, and this way one

document is completely referred by the other document with the

help of ordered pairs of individual common pattern positions in

one document and their respective lengths.

I. INTRODUCTION

Document compression and ciphering using pattern
matching technique is done with the help of two documents.
One of them acts as a key and other one is the document itself
which is to be compressed & ciphered. Target document is
segmented as the longest common patterns among the two
documents. Initial position in the key document & respective
lengths of the patterns are taken as ordered pairs in a sequence
in which they possess in the target document. These ordered
pairs along with the key document can regenerate the target
document.

This technique can be used to hide data within the data
with a slight difference from traditionally used Steganography
[1] techniques. Additionally it has some advantages over
traditional steganography like ability to hide larger documents
in smaller documents, no distortion in carrier document,
document compression and better security as the key
document and ordered pairs can be transmitted separately.

II. DEFINITIONS

A. Target Document

It’s the document which is targeted to be compressed &
ciphered using pattern matching technique.

It could be text document, image & video files, other
binary files or anything else that is made of smaller element
sequences.

B. Key Document

It's an arbitrary document which is being used as a
reference to the target document segments. Key document is a

must for ciphering & compressing the target document. The
same key document is again needed while regenerating the
target document from the ciphered and compressed output of
the document compression and ciphering using pattern
matching technique.

In accordance with the target document; key document
may also be of several forms, but a key document of a
particular target document must be composed of the same
element grains.

In case of text type key document, it may consist of
randomly jumbled characters, shuffled dictionary words or
even shuffled sentences for instance.

C. Universal Document

A universal document is an arbitrary document which
consists of all the element grains of a particular document type
(i.e. Text document, binary document etc.) and never fails to
produce a common pattern of at least single element.

D. Fine Document

It's an arbitrary, considerably large universal document
that is capable of producing considerably large sequences for
the entire target document of the same document type.

E. Virtually Fine Document

It's an arbitrary document that may or may not be a fine
document but it can produce considerably large common
patterns for a particular purpose. For example, a digest of a set
of web pages of a particular web site that has high confidence
value; can be a virtually fine document for that particular set
of web pages.

F. Absolute Document

Absolute document of a particular document type is
defined as the document with no repeated patterns & never
fails to generate sequences of at least unit length. Such
document is a collection of element grains taken only once for
a particular document type.

MTECS-2008

G. Ideal Document

It's an extremely large universal document of a particular
document type, which is (when used as key document)
capable of finding whole target document as a single common
pattern for any possible target document of its domain. It's an
imaginary but unique document.

H. Element Grain

These are smaller pieces of a particular sequence by which
documents are generated. Like in a binary sequence, 0 & 1
and in a decimal sequence digits from 0 to 9 are element
grains, similarly for a text document alphabets, digits &
special symbols are element grains.

I. Strange Element

A particular element of a target document that fails to get
referred in a particular key document is a strange element for
that key document.

J. Common Pattern

A sequence of at least one element that is common in both
the documents is a common pattern. While segmenting the
target document, such common sequences start after the end of
the previous longest pattern sequence in the target document
but the same can start from anywhere in the entire key
document.

K. Ordered Pair

These are the output of pattern matching technique for
compression & ciphering of a document. It's a set of 2
integers which carry start positions and lengths (optionally the
end position) of the common patterns in the key document.
Second element of an ordered pair may not be an integer in
case of strange element. Such a case is to be handled
separately.

L. Base

It's a variable which determines the start position of a
pattern in the target document. It remains same until current
longest pattern is being searched. Length of the current longest
pattern is accumulated in the previous base to determine next
value of the base.

M. Offset

It's a variable which determines the beginning position of a
particular pattern in the key document. It's varying from the
beginning of the key document to the end for every pattern
until the longest common pattern is found.

III. COMPRESSION & CIPHERING

Compression & ciphering has time complexity in terms of
the length of the key document as well as the target document.
Larger the documents, more the time consumed to identify the
longest common pattern. But larger key document results

better compression and ciphering due to the probability of
larger common sequences.

A. Objective

To find out ordered pairs of lengths & positions in the key
document of longest common sequences of the entire target
document in the key document; where the sequence is a prefix
of the remaining target document and a subsequence of the
key document.

B. Method

i. Select the target document of any type. For instance,
text document. Select an appropriate key document of
the same type.

ii. Use any pattern matching algorithm (e.g. Boyer-
Moore [2], Knuth-Morris-Pratt [3]) to find out
common sequence. For instance, take the simplest
method i.e. Bruit Force Algorithm [4].

iii. Search for the very first letter of the target document
in the key document. If found, note the position P of
that letter in the key document from the beginning of
the key document & length L equals to 1.

iv. Then check whether the second letter of the target
document matches with the letter at position P+1 in
the key document.

v. If it's so, then increment the value of the length by 1 &
continue this process until a mismatch occurs or any
one of the two documents finishes.

vi. If a mismatch occurs repeat the search for the very
first letter of the target document again in the key
document at position >P (i.e. after the previous
matching position).

vii. If found at a position P', then match next letters of the
target document and increase L’ respectively until a
mismatch or end of any of the two documents occurs.

viii. If current length L' of common pattern is greater than
previous length L, then update the value of length L
with L' & position P with P'.

ix. Repeat the step (vi) to (viii) until end of key document
(or target document) occurs.

x. Now first longest sequence of length L (i.e. a prefix of
target document) has been found in the key document
from position P to P+L-1.

xi. Note down the first ordered pair as (P, L).

xii. Now repeat entire pattern matching process for
remaining document i.e. starting from the very next
position in the target document up to which the
common sequence has been found.

MTECS-2008

xiii. Create the ordered pairs until entire target document is
finished, (i.e. End of target document occurs).

xiv. If a strange element comes in the target document and
key document fails to find a common sequence of that
element then consider the position P in the key
document as -1 (or any negative number for that
matter.) It indicates that no match found in the key
document at any real position. Put the element itself
(or certain transformed value for security) as second
parameter of the ordered pair, because it has no
reference in the key document. Length of the common
sequence is no longer needed in such cases as it is
always 1.

C. Algorithm

procedure compress_and_cipher()

 initialize i=base=offset=length=begin=0

 target[]; array of target document elements

 key[]; array of key document elements

 while target[base] do

 while target[base+i] AND key[offset+i] do

 while target[base+i]==key[offset+i] do

 i++

 end while

 if i>length do

 begin=offset

 length=i

 end if

 offset++

 i=0

 end while

 if length==0 do

 gen_op(-1, target[base])

 base++

 else

 gen_op(begin, length)

 base+=length

 end while

 length=offset=0

 end while

end procedure

procedure gen_op(P, L)

 store op{(P, L)}

 return

end procedure

D. Illustration

Key: “a quick brown fox jumps over the lazy dog.”

Target: “oh! the fox is so quick.”

Start with the first character of the target „o‟, it matches
with 11

th
 character of the key. But second character of the

target „h‟ doesn’t match with the 12
th

 character of the key. Till
now; position P=11 & length L=1. Again search for the 1

st

letter „o‟ of the target in the remaining key. Next match occurs
at 16

th
 position but again it fails to match next character.

Further matches occur at 25
th

 & 40
th

 positions but both fail to
match the next character. Hence the first ordered pair is
{(11,1)}.

Remaining target stats with „h‟ its 1
st
 match occurs at 31

st

position in the key but again next character mismatches. No
other „h‟ exists in the remaining key. Again the length of the
longest common sequence is 1. It generates ordered pair
(31,1). Hence the ordered pairs are {(11,1) (31,1)}.

Next character of the target is „!‟, which is a strange
element for the key i.e. no match exists in the entire key. So
the position is taken as -1 and instead of length character „!‟
itself is taken as second parameter of the ordered pair. Hence
the ordered pairs are {(11,1) (31,1) (-1,!)}.

Next character of the target is a „white space‟ which
matches at 2

nd
, 8

th
, 14

th
, 18

th
, 24

th
, 29

th
, 33

rd
 & 38

th
 positions of

the key. All except 29
th

 fail to match the next character. But it
matches from 29

th
 to 33

rd
 in the key which produces L=5.

Hence ordered pairs are {(11,1) (31,1) (-1,!) (29,5)}. This
process keeps on until the target lasts.

Ordered Pairs: {(11,1) (31,1) (-1,!) (29,5) (15,4) (5,1)
(23,2) (23,1) (11,1) (2,6) (42,1)}

IV. DECOMPRESSION & DECIPHERING

Decompression & deciphering is an easier and simpler
process than compression & ciphering and has no time
complexity (as no comparison is needed).

A. Objective

To regenerate the target document using key document and
set of ordered pairs.

B. Method

i. Take the first ordered pair and read its first parameter
(i.e. Position), find out the position P in the key
document.

ii. Read the second parameter L of the ordered pair (i.e.
Length).

iii. Copy the substring of key document from position P
to P+L-1 into a new blank document.

MTECS-2008

iv. Take the next ordered pair and according to the
parameters, find out the sub-sequence and append it
into the freshly taken document.

v. If first parameter of the ordered pair is -1, then simply
append the second parameter of the ordered pair into
the fresh document.

vi. Repeat the process until all the ordered pairs last.

vii. Resulting fresh document is decompressed &
deciphered form of the actual target document.

C. Algorithm

procedure decompress_and_decipher()

 set op; set of ordered pairs

 initialize temp=NULL

 initialize new_doc=NULL

 for all op do

 if op->position is -1 do

 temp=op->length

 else

 temp=sub_str(op->position, op->length)

 end if

 new_doc+=temp

 end for

end procedure

procedure sub_str(P, L)

 temp=NULL

 for i=P to P+L-1 do

 temp+=key[i]

 end for

 return temp

end procedure

D. Illustration

Key: “a quick brown fox jumps over the lazy dog.”

Ordered Pairs: {(13,1) (11,1) (-1,,) (8,2) (4,1) (30,1)
(29,5) (39,3) (2,1) (5,1) (23,2) (23,1) (11,1) (33,5) (42,1)}

Start with the first ordered pair (13,1); it implies that the
target begins with a subsequence of length L=1, and position
13 in the key. Hence the subsequence is “n”.

Next ordered pair is (11,1); it implies that the next
subsequence is again of length L=1 and position 11 in the key.
Hence the subsequence is “o”. Concatenate it with the
previous subsequence. Updated target prefix becomes “no”.

Next ordered pair is (-1,,); it’s position parameter is -1,
which indicates that there is some strange element which has
no match in the key. So the subsequence generated by this

ordered pair is the second parameter itself i.e. “,”. Hence the
updated prefix of the target is “no,”.

Similarly next ordered pair (8,2) generates a subsequence
of length L=2 and start position P=8 as “ b”. Hence the
updated target prefix is now “no, b”.

This process keeps on until the last ordered pair of the set.
And finally generates the whole target.

Target: “no, but the dog is so lazy.”

V. DISCUSSIONS

1) Larger the key document, better the degree of

compression, but more the time complexity.

2) For improved security this method can be applied in

Cascade mode (i.e. the key document can further be ciphered

with reference to any other key document).

3) Larger the common patterns & fewer the

overlapping sequences, lesser the chances of deciphering by

guessing.

4) Patterns are sequential in the target document but are

independent in the key document (i.e. these may be adjacent,

apart or over lapping).

5) To use a fine document as key document is a good

choice for document transmission if it is available at both the

ends. But if key document also needs to be transmitted then a

virtually fine document is preferred.

6) To enhance security; if multiple identical common

sequences are found in the key document then instead of

taking first one, any one of them can be chosen randomly,

whenever such pattern comes in the target document.

7) An ideal document of a particular document type

must be unique. Otherwise one ideal document will fail to

generate single ordered pair for entire other ideal document.

8) An ideal document has undefined start point as well

as end point.

9) It may take extremely large time to find out a single

pattern for the whole target document if ideal document is

taken as a key document.

10) An ideal document can compress any document of

its category to the best possible degree of compression (i.e. in

only a single ordered pair).

11) If the target & key documents are identical, then the

set of ordered pairs will be a single set. The first parameter of

the ordered pair will be 0 & second parameter will be the

length of the document.

12) In the traditional Steganography techniques actual

data are injected into the carrier file, which causes the

distortion in the carrier file and also limits the carrying

capacity of the carrier file. While in this technique of hiding

data within the data actual document is only being referred by

the carrier (or key) document, which causes no distortion and

leads to unlimited carrying capacity of the carrier document.

MTECS-2008

VI. CONCLUSION

Document Compression and Ciphering Using Pattern
Matching Technique can be used for secure data transmission
over the internet. Proper key documents can provide extreme
compression which saves lots of bandwidth and results in
faster data transmission. Heavy web portals can use Virtually
Fine documents of strongly associated pages to deliver
maximum information by transmitting minimum bytes of
data. It is yet another Steganography Technique.

REFERENCES

 James C. Judge, “Steganography: Past, Present, Future,” UCRL-ID-
151879 December, 2001. https://e-reports-ext.llnl.gov/pdf/245799.pdf

 Boyer R.S., Moore J.S., “A fast string searching algorithm,”
Communications of the ACM, Vol. 20, No. 10, pp. 762-772, 1977.

 Knuth D.E., Morris J.H., Pratt V.R., “Fast pattern matching in strings,”
SIAM Journal on Computing, Vol. 6, No. 2, pp. 323-350, 1977.

 P.D. Michailidis & K.G. Margaritis, “On-line String Matching
Algorithms: Survey and Experimental Results,” IJCM 2001, VOL 76;
PART 4, pages 411-434

