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Abstract
Dimensionality reduction is an essential step in
high-dimensional data analysis. Many dimension-
ality reduction algorithms have been applied suc-
cessfully to multi-class and multi-label problems.
They are commonly applied as a separate data pre-
processing step before classification algorithms. In
this paper, we study a joint learning framework
in which we perform dimensionality reduction and
multi-label classification simultaneously. We show
that when the least squares loss is used in classifi-
cation, this joint learning decouples into two sepa-
rate components, i.e., dimensionality reduction fol-
lowed by multi-label classification. This analysis
partially justifies the current practice of a separate
application of dimensionality reduction for classi-
fication problems. We extend our analysis using
other loss functions, including the hinge loss and
the squared hinge loss. We further extend the for-
mulation to the more general case where the in-
put data for different class labels may differ, over-
coming the limitation of traditional dimensionality
reduction algorithms. Experiments on benchmark
data sets have been conducted to evaluate the pro-
posed joint formulations.

1 Introduction
Dimensionality reduction extracts a small number of fea-
tures by removing irrelevant, redundant, and noisy informa-
tion. It is a crucial step for the analysis of high-dimensional
data. Classical dimensionality reduction techniques include
unsupervised algorithms such as principal component analy-
sis (PCA) [Jolliffe, 2002] and supervised algorithms such as
linear discriminant analysis (LDA) [Fukunaga, 1990], canon-
ical correlation analysis (CCA) [Hotelling, 1936], and partial
least squares (PLS) [Arenas-Garcı́a et al., 2007]. These algo-
rithms are commonly applied as a separate data preprocessing
step before classification algorithms, and they have been ap-
plied successfully to many real-world problems.

One limitation of these approaches lies in the weak connec-
tion between dimensionality reduction and classification al-
gorithms. Indeed, dimensionality reduction algorithms such
as CCA and PLS and classification algorithms such as support

vector machines (SVM) optimize different criteria. It is un-
clear which dimensionality reduction algorithm can best im-
prove a specific classification algorithm such as SVM. In ad-
dition, most traditional dimensionality reduction algorithms
assume that a common set of samples are involved for all
classes. However, in many applications, e.g., when the data is
unbalanced, it is desirable to relax this restriction so that the
input data associated with each class can be better balanced.
This is especially useful when some of the class labels in the
data are missing.

In this paper we analyze dimensionality reduction in the
context of multi-label classification [McCallum, 1999; Ueda
and Saito, 2003; Zhang and Zhou, 2008]. We study a joint
learning framework in which we perform dimensionality re-
duction and multi-label classification simultaneously. We
show that when the least squares loss is used in classification,
this joint learning decouples into two separate components,
i.e., a separate dimensionality reduction step followed by
multi-label classification. This partially justifies the current
practice of a separate application of dimensionality reduction
for classification problems. When other loss functions, in-
cluding the hinge loss and the squared hinge loss, are em-
ployed the resulting optimization problems are non-convex.
We show that they can be relaxed into convex-concave formu-
lations. We propose a simple alternating algorithm to solve
the joint learning problem. Experiments show that the alter-
nating algorithm often converges in a few steps.

One appealing feature of the proposed joint learning for-
mulations is that they can be extended naturally to cases
where the input data for different labels may differ, over-
coming the limitation of traditional dimensionality reduction
algorithms. We conduct experiments using a collection of
multi-label data sets. Results show that the joint formulations
are comparable to a separate dimensionality reduction and
classification, while they significantly outperform classifica-
tion without dimensionality reduction. We demonstrate the
superiority of the joint formulation using a data set in which
the input data for different labels differ, and thus traditional
dimensionality reduction algorithms are not applicable.

2 Background
In binary-class classification, we are given a data set
{(xi, yi)}n

i=1 where xi ∈ Rd is the input, yi ∈ {−1, 1} is
the output, and n is the number of data points. We consider



a linear classifier f : x ∈ Rd → f(x) = wT x + b that
minimizes the following regularized cost function:

E(f) =
n∑

i=1

L (yi, f(xi)) + µΩ(f), (1)

where w ∈ IRd is the weight vector, b ∈ IR is the bias, L is a
prescribed loss function, Ω is a regularization functional mea-
suring the smoothness of f , and µ > 0 is the regularization
parameter. Different loss functions lead to different learning
algorithms.

In multi-label classification with k labels, each xi can be
associated with multiple labels, that is, yi ∈ P({1, · · · , k})
where P(·) denotes the power set. The model in Eq. (1) can
be extended to the multi-label case by constructing one bi-
nary classifier for each label in which instances relevant to
this label form the positive class, and the rest form the nega-
tive class. This is an extension of the one-against-rest scheme
commonly applied for multi-class classifications [Rifkin and
Klautau, 2004].

2.1 Least Squares Loss
If the least squares loss is applied for multi-label classifi-
cation, we compute a set of k linear functions, f` : x →
f`(x) = wT

` x + b`, ` = 1, · · · , k, that minimize the follow-
ing objective function:

E1({f`}) =
k∑

`=1

(
n∑

i=1

(f`(xi)− yi`)
2 + µ||w`||22

)
, (2)

where Y = (yi`) ∈ IRn×k is the class label indicator matrix
defined as: yi` = 1 if ` ∈ yi, and −1 otherwise.

2.2 Hinge Loss
If the hinge loss is applied for multi-label classification, we
consider a set of k linear functions, f` : x → f`(x) =
wT

` x + b`, ` = 1, · · · , k, that minimize the following ob-
jective function:

E2({f`}) =
k∑

`=1

(
n∑

i=1

(1− f`(xi)yi`)+ + µ||w`||22
)

, (3)

where (z)+ = max(0, z). The `-th linear function can be
computed by minimizing

∑n
i=1 (1− f`(xi)yi`)+ +µ||w`||22,

whose dual problem is given by

max
α`∈IRn

n∑

i=1

α`
i −

1
2
(α`)T D`XXT D`α` (4)

s. t.
n∑

i=1

yi`α
`
i = 0, 0 ≤ α` ≤ C,

where X = [xi, · · · , xn]T is the data matrix, C = 1
2µ ,

α` ∈ IRn is the vector of Lagrange dual variables, D` is a di-
agonal matrix with (D`)ii = yi`. This is a standard quadratic
programming (QP) problem.

2.3 Dimensionality Reduction
When the input data lie in a high-dimensional space, dimen-
sionality reduction is commonly applied as a separate data
preprocessing step. Principal component analysis (PCA) [Jol-
liffe, 2002] is a well-known technique for unsupervised di-
mensionality reduction. PCA reduces the data dimensional-
ity while keeping the variance of the data as much as possi-
ble. Linear discriminant analysis (LDA) [Fukunaga, 1990] is
a supervised dimensionality reduction technique in which the
projection is obtained by maximizing the ratio of inter-class
distance to intra-class distance. Canonical correlation analy-
sis (CCA) and partial least squares (PLS) are commonly-used
dimensionality reduction techniques for multi-label prob-
lems. All of these algorithms are applied as a separate pre-
processing step before classification algorithms. In the fol-
lowing, we study a joint learning framework in which we per-
form dimensionality reduction and multi-label classification
simultaneously.

3 Joint Dimensionality Reduction and
Multi-label Classification

We study a joint learning framework for simultaneous di-
mensionality reduction and multi-label classification. In this
framework, we learn a set of k linear functions, f` : x →
f`(x) = wT

` QT x + b`, ` = 1, · · · , k, that minimize the fol-
lowing objective function:

E3({f`}, Q) =
k∑

`=1

(
n∑

i=1

L(yi`, f`(xi)) + µ||w`||22
)

, (5)

where Q ∈ IRd×r is the projection matrix, r is the reduced
dimensionality, and w` ∈ IRr is the weight vector. We show
that when the least squares loss is used, the joint optimization
of Q and W results in a closed-form solution. Moreover, the
optimal transformation is closely related to classical dimen-
sionality reduction techniques discussed in Section 1.

3.1 Joint Learning with the Least Squares Loss
We assume that both the input X and the output Y are cen-
tered. In this case, all bias terms {b`} are zero, and the opti-
mization problem in Eq. (5) becomes

min
W,Q:QT Q=I

||XQW − Y ||2F + µ||W ||2F , (6)

where || · ||F denotes the Frobenius norm [Golub and Van
Loan, 1996] and W = [w1, · · · ,wk]. The optimal solution
to the above optimization problem is given by a closed-form,
as summarized in the following theorem:

Theorem 3.1. Let Y be the target matrix defined from the
labels. Then the optimal W that solves the joint learning
problem in Eq. (6) is given by

W =
(
QT XT XQ + µI

)−1
QT XT Y, (7)

and the optimal Q can be computed by solving

max
Q

tr
(
((QT (XT X + µI)Q)−1QT XT Y Y T XQ

)
. (8)



Proof. Taking the derivative of the objective in Eq. (6) with
respect to W and setting it to zero, we have

W =
(
QT XT XQ + µI

)−1
QT XT Y. (9)

Substituting W in Eq. (9) into the objective function in
Eq. (6), we obtain Eq. (8).

Theorem 3.1 shows that the transformation Q and the
weight matrix W can be computed in a closed-form when the
least squares loss is used. The solutions depend on the class
label indicator matrix Y . We show below that the joint learn-
ing formulation is connected with traditional dimensionality
reduction algorithms when different choices of Y are applied:

PLS: For multi-label problems, the class label indicator
matrix Y defined in Section 2.1 can be used. In this case,
the optimal Q from the joint formulation in Theorem 3.1 co-
incides with the optimal transformation in orthonormalized
partial least squares (OPLS) [Arenas-Garcı́a et al., 2007].

CCA: When the class indicator matrix is set to
Y (Y T Y )−

1
2 , the problem in Eq. (8) can be expressed as:

max
Q

tr
(
((QT (XT X + µI)Q)−1QT XT Y (Y T Y )−1Y T XQ

)
,

which is the regularized canonical correlation analysis (CCA)
formulation [Sun et al., 2008].

LDA: In the special case of multi-class problems, where
each data point belongs to one class only, we define the class
indicator matrix Y as follows: yij =

√
n/nj −

√
nj/n

if yi = j, and −√
nj/n otherwise, where nj is the sam-

ple size of the j-th class. It is easy to verify that XT X
and XT Y Y T X correspond to the total scatter and inter-class
scatter matrices used in LDA [Fukunaga, 1990]. Thus, the
optimal Q from the joint formulation in Theorem 3.1 coin-
cides with the optimal transformation computed by LDA.

The analysis above shows that, in the least squares case, the
joint learning of dimensionality reduction (the transformation
Q) and multi-label classification (the weight matrix W ) is de-
coupled into two separate steps. In particular, the joint learn-
ing of Q and W is equivalent to computing transformation
Q first by some dimensionality reduction algorithms such as
LDA, CCA, and OPLS, and then apply classification in the
dimensionality-reduced space. Therefore, performance is not
expected to be improved by optimizing the transformation
and the weight matrix jointly. This result justifies the current
practice of a separate application of dimensionality reduction
for classification.

3.2 Joint Learning with the Hinge Loss
When the hinge loss is employed in the joint learning formu-
lation in Eq. (5), we obtain the following optimization prob-
lem:

min
{w`,ξ`

i},Q

k∑

`=1

(
1
2
||w`||2 + C

n∑

i=1

ξ`
i

)
(10)

s. t. yi`(wT
` QT xi + b`) ≥ 1− ξ`

i , ξ`
i ≥ 0, ∀ i, `,

QT Q = I,

where ξ`
i is the slack variable for xi in the `-th model. The

dual form of the problem in Eq. (10) is given by:

min
Q

max
{α`}

k∑

`=1

(
n∑

i=1

α`
i −

1
2

(
(α`)T D`XQQT XT D`α`

)
)

s. t.
n∑

i=1

y`
iα

`
i = 0, 0 ≤ α` ≤ C, ∀ `, (11)

QT Q = I.

Convex-concave Relaxation
The objective and the constraint QT Q = I in Eq. (11) are
non-convex with respect to Q. We show in the following
that this problem can be relaxed to a convex-concave for-
mulation. Specifically, we replace QQT with Z in the ob-
jective in Eq. (11) and add QQT = Z to the constraint. It
can be shown [Overton, 1993] that the set Z = {Z|tr(Z) =
r, 0 ¹ Z ¹ I} is the convex hull of the non-convex set
Z0 = {Z|Z = QQT , QT Q = I, Q ∈ Rd×r}, where A ¹ B
denotes that B − A is positive semidefinite. Thus, the opti-
mization problem in Eq. (11) can be relaxed to the following
convex-concave problem:

max
{α`}

min
Z

k∑

`=1

(
n∑

i=1

α`
i −

1
2

(
(α`)T D`XZXT D`α`

)
)

s. t.
n∑

i=1

y`
iα

`
i = 0, 0 ≤ α` ≤ C, ∀ `, (12)

tr(Z) = r, 0 ¹ Z ¹ I.

All the constraints in the formulation in Eq. (12) are con-
vex. In addition, the objective is convex in Z and con-
cave in {α`}k

`=1. Thus, this optimization problem is a
convex-concave problem and the existence of a saddle point
is guaranteed by the well-known von Neumann Lemma [Ne-
mirovski, 1994]. Since the objective function is maximized in
terms of {α`}k

`=1 and minimized in terms of Z at the saddle
point, it is also the globally optimal solution to this problem
[Nemirovski, 1994].

An Alternating Algorithm
We propose to solve the joint learning formulation in Eq. (11)
iteratively. More specifically, when Q is fixed, solutions to
{α`}k

`=1 are decoupled for different `. Each α` can be ob-
tained by solving a standard SVM problem with a modified
kernel XQQT XT . When {α`}k

`=1 is fixed, Q can be com-
puted by solving the following problem:

max
Q:QT Q=I

tr(QT XT SXQ), (13)

where

S =
k∑

`=1

(
D`α`(α`)T D`

)
. (14)

It is known that this trace maximization problem has a
closed-form solution. In particular, columns of the opti-
mal Q∗ consist of the left singular vectors of the matrix
[XT D1α

1, · · · , XT Dkαk] ∈ Rd×k. Experiments in Sec-
tion 5 show that the proposed iterative procedure converges
in a small number of steps.



It is interesting to note that the matrix S in Eq. (14) can be
considered as a similarity matrix between data points. More
specifically, the similarity between xi and xj is based on
the vectors of Lagrangian variables {α`} computed from k
SVMs, as well as their class label information in {D`}. In-
tuitively, for xi and xj , if yi`α

`
i is similar to yj`α

`
j for all

` = 1, · · · , k, then these two points should have a high simi-
larity score. Therefore, the computation of {α`} from k sep-
arate SVMs can be interpreted as an intermediate step of con-
structing a similarity matrix, which is subsequently used to
compute the low-dimensional embedding.

Learning Orthonormal Features
In the above formulations, we require the transformation to be
orthonormal, that is QT Q = I . We can also require the trans-
formed features to be orthonormal by imposing the following
constraint:

QT (XT X + µI)Q = I, (15)

where a regularization term is added to deal with the singu-
larity problem of the covariance matrix. It can be shown that
this constraint can also be relaxed to convex ones, resulting in
a convex-concave problem. Similarly, the proposed iterative
procedure can be adapted to solve this problem in which the
iterative step for solving Q becomes

max
Q

tr
(
QT XT SXQ

)
,

subject to the constraint in Eq. (15). The optimal Q can be
readily computed via solving a generalized eigenvalue prob-
lem.

Joint Learning with the Squared Hinge Loss
The squared hinge loss is also commonly used in SVM, which
is defined as L(y, f) = max(0, 1− yf)2. With this loss, the
optimization problem in Eq. (5) becomes:

min
{w`,ξ`

i},Q

k∑

`=1

(
1
2
||w`||2 + C

n∑

i=1

(
ξ`
i

)2

)
(16)

s. t. yi`((w`)T QT xi + b`) ≥ 1− ξ`
i , ∀ i, `,

QT Q = I.

The dual form of the problem in Eq. (16) is given by:

min
Q

max
{α`}

k∑

`=1

(
n∑

i=1

α`
i −

1
2

(
(α`)T

(
D`XQQT XT D` +

1
2C

I

)
α`

))

s. t.
n∑

i=1

y`
iα

`
i = 0, α` ≥ 0, ∀ `,

QT Q = I. (17)

Similar techniques can be applied to relax the problem into a
convex-concave formulation and derive an iterative algorithm
to compute the solution. It can also be extended to learn or-
thonormal features as discussed above.

Related Work
Our joint learning formulation in Eq. (11) is closely related to
the sparse learning algorithm proposed in [Wu et al., 2006],
which works on binary-class problems. The column vec-
tors of Q are considered as pseudo support vectors in [Wu
et al., 2006], and no orthonormality condition is imposed
on Q. In addition, [Wu et al., 2006] focuses on construct-
ing an approximate SVM by using a small set of support
vectors, while we focus on dimensionality reduction embed-
ded in SVM. Joint structure learning and classification for
multi-task learning has been studied in [Ando and Zhang,
2005]. [Amit et al., 2007] proposed joint feature extraction
and multi-class SVM classification using the low-rank con-
straint. Due to the intractability of this constraint, it is re-
laxed to the trace norm constraint and the relaxed problem
was solved by gradient-descent algorithms. The computa-
tions involved in the proposed formulation are much simpler
than all these approaches, while our experiments below show
that this simple iterative algorithm often achieves the globally
optimal solution. [Argyriou et al., 2007] proposed to learn
a common sparse representation from multiple related tasks
based on an iterative procedure, which is shown to converge
to a global optimum. The analysis in [Argyriou et al., 2007]
may be used to prove the convergence property of a perturbed
version of the proposed algorithm. In our formulation, the
step for computing α` is reduced to solving a standard SVM
with a modified kernel, and hence they are also related to the
problem of kernel learning [Lanckriet et al., 2004].

4 Dimensionality Reduction with Different
Input Data

Our discussions above assume that the input data for all la-
bels are the same, i.e., a common data matrix X for all la-
bels. In many practical applications, especially when the data
is unbalanced, it is desirable to relax this restriction so that
the input data associated with each label can be better bal-
anced. Traditional dimensionality reduction algorithms such
as LDA, CCA, and PLS cannot be applied in such scenario.
We show that the proposed joint formulations can be extended
naturally to deal with such type of data.

Let X` be the data matrix of the `-th label. We obtain the
following optimization problem (in the dual form) under the
hinge loss:

min
Q

max
{α`}

k∑

`=1

(
n∑

i=1

α`
i −

1
2
((α`)T D`X`QQT (X`)T D`α`))

s. t.
n∑

i=1

y`
iα

`
i = 0, 0 ≤ α` ≤ C, ∀ `, QT Q = I.

Similar to the above discussions, the optimization problem in
Eq. (18) can be solved iteratively. In particular, when Q is
fixed, {α`}k

`=1 can be computed by solving k standard SVM
problems with the kernel modified as X`QQT (X`)T . When
{α`}k

`=1 is fixed, the following trace maximization problem
is involved:

max
Q:QT Q=I

tr

(
QT

k∑

`=1

(
(X`)T D`α`(α`)T D`X`

)
Q

)
. (18)



Table 1: Mean ROC achieved by various formulations on the art (top) and business (bottom) data sets. The data sets are
partitioned into training and test sets with different ratios, and the mean ROC values and standard deviations over ten random
trials are reported in each case.

RATIO MLSVMT
L1 MLSVMF

L1 MLSVMT
L2 MLSVMF

L2 CCA+SVM SVM
20% 63.07±0.92 62.71±0.98 63.07±0.92 62.71±0.99 63.02±1.06 44.07±5.12
30% 64.15±0.60 63.55±0.98 64.15±0.60 63.51±0.96 63.72±0.96 49.61±3.47
40% 65.11±0.76 64.32±0.67 65.11±0.76 64.33±0.66 64.65±0.62 53.94±3.59
50% 65.74±0.67 65.05±1.11 65.74±0.67 65.04±1.13 65.17±1.00 56.92±3.93
60% 66.34±0.76 64.73±1.00 66.34±0.76 64.76±0.99 65.01±0.97 59.01±2.15
20% 68.74±3.56 70.89±1.99 68.74±3.56 70.89±2.00 71.06±2.02 38.39±6.81
30% 74.54±0.69 73.15±1.47 74.54±0.69 73.14±1.48 73.20±1.43 49.07±6.84
40% 75.33±0.91 74.08±1.36 75.33±0.91 74.09±1.37 74.17±1.31 59.82±4.88
50% 76.82±1.34 74.67±1.22 76.82±1.33 74.67±1.22 74.72±1.22 62.11±8.53
60% 77.69±1.47 76.07±1.38 77.69±1.47 76.05±1.37 76.15±1.42 68.59±5.64

It is known that columns of Q that solves the above
problem consist of the left singular vectors of the matrix
[(X1)T D1α1, · · · , (Xk)T Dkαk] ∈ Rd×k.

5 Experiments
In this section we evaluate the proposed formulations when
the input data for different labels are the same or different.

5.1 Experiments on Multi-label Data Sets
The two multi-label data sets used are the art and business,
which were originally used in [Ueda and Saito, 2003], and
they consist of web pages from the art and business directo-
ries at Yahoo!. Each web page is assigned a variable num-
ber of labels indicating its categories. All instances are en-
coded with TF-IDF and are normalized to have unit length.
These data sets are high-dimensional (23146 and 21924 di-
mensions), and we extract 20 labels and 1000 instances from
each data set. We also conduct experiments on two other
data sets scene and yeast and the detailed results are omit-
ted due to space constraints, but the results are briefly sum-
marized below. We report the receiver operating character-
istic (ROC) values of the proposed four formulations in Ta-
ble 1. The hinge loss and squared hinge loss multi-label
SVM formulations with the orthonormal transformation and
orthonormal features are denoted as MLSVMT

L1
, MLSVMF

L1
,

MLSVMT
L2

, and MLSVMF
L2

, respectively. The performance
of SVM in the original data space and in the dimensionality-
reduced space by CCA (CCA+SVM) is also reported.

We observe from the results that the proposed formula-
tions with the orthonormal transformation and orthonormal
features achieve the highest performance on the two high-
dimensional (art and business) and two low-dimensional
(scene and yeast) data sets, respectively. The improvement
over CCA+SVM is small on the four data sets. This implies
that the joint learning of dimensionality reduction and classi-
fication is similar to applying them separately in some cases.
The experiments also show that formulations based on dimen-
sionality reduction generally outperform those in the origi-
nal space, especially when the data dimensionality is high.
This justifies the use of dimensionality reduction in multi-
label classification.

To evaluate the convergence of the proposed iterative algo-
rithm, we plot the objective values of the MLSVMT

L1
formu-
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Figure 1: Convergence of MLSVMT
L1

on the art (left) and
business (right) data sets. “obj(Q)” and “obj(α)” denote the
objective values after updating Q and {α}k

`=1, respectively,
at each iteration.

lation on the art and business data sets after each update of
Q and {α}k

`=1 separately in Figure 1. We can see that the
objective values of the maximization and minimization prob-
lems converge to the same point in a few steps on both data
sets.

5.2 Experiments on Data with Different Inputs
The landmine data [Xue et al., 2007] consists of 29 subsets
(tasks) that are collected from various landmine fields. Each
object in a given task is represented by a 9-dimensional fea-
ture vector and a binary label indicating landmine or clut-
ter. The inputs for different tasks are different. We apply
MLSVMT

L1
on the landmine data to learn a common trans-

formation for all of the tasks, and project them into a low-
dimensional space using this transformation. This transfor-
mation can capture the common structures shared by all of
the tasks and improve the detection performance. We also
apply SVM on each of the task independently. The data for
each task are partitioned into training and test sets with dif-
ferent proportions, and the averaged ROC values and stan-
dard deviations over 50 random partitions in each case are
depicted in Figure 2. We can see that the proposed formula-
tion can improve performance consistently by capturing the
common predictive structures shared among multiple tasks.
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Figure 2: Average ROC for the landmine detection problem.
Different proportions (indicated by x-axis) of the data are
used for training, and the average ROC values over 50 ran-
dom partitions are plotted.

To test the statistical significance of the differences between
the performance of these two methods, we perform Wilcoxon
signed rank test for the null hypothesis that the performance
achieved by these two methods across 50 random trials is the
same, and the maximum p-value obtained for different ratios
of training/test splitting is 0.0097. This shows that the per-
formance differences between these two methods are statisti-
cally significant. Note that traditional dimensionality reduc-
tion algorithms are not applicable for this problem.

6 Conclusion and Discussion
We study the role of dimensionality reduction in multi-label
classification in this paper. We show that when the least
squares loss is used in classification, the joint learning de-
couples into two separate components. When the hinge loss
is used, the resulting optimization problems are non-convex,
and we show that they can be relaxed into convex-concave
formulations. We further extend the proposed formulations
to the case where the input data for different labels may be
different.

Experiments show that the proposed iterative algorithm
converges in a small number of iterations. We plan to study
this convergence property by using results developed in re-
lated fields [Argyriou et al., 2007]. The relative perfor-
mance of formulations with orthonormal transformation and
orthonormal features is different for different data sets. We
plan to analyze this in the future.
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