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ABSTRACT
Traditional co-clustering methods identify block structures
from static data matrices. However, the data matrices in
many applications are dynamic; that is, they evolve smoothly
over time. Consequently, the hidden block structures em-
bedded into the matrices are also expected to vary smoothly
along the temporal dimension. It is therefore desirable to en-
courage smoothness between the block structures identified
from temporally adjacent data matrices. In this paper, we
propose an evolutionary co-clustering formulation for iden-
tifying co-cluster structures from time-varying data. The
proposed formulation encourages smoothness between tem-
porally adjacent blocks by employing the fused Lasso type of
regularization. Our formulation is very flexible and allows
for imposing smoothness constraints over only one dimen-
sion of the data matrices, thereby enabling its applicability
to a large variety of settings. The optimization problem for
the proposed formulation is non-convex, non-smooth, and
non-separable. We develop an iterative procedure to com-
pute the solution. Each step of the iterative procedure in-
volves a convex, but non-smooth and non-separable prob-
lem. We propose to solve this problem in its dual form,
which is convex and smooth. This leads to a simple gradi-
ent descent algorithm for computing the dual optimal solu-
tion. We evaluate the proposed formulation using the Allen
Developing Mouse Brain Atlas data. Results show that our
formulation consistently outperforms methods without the
temporal smoothness constraints.
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1. INTRODUCTION
Clustering is one of the major techniques for unsupervised

discovery of hidden structures from complex data sets. Com-
mon clustering methods include theK-means algorithm, the
spectral methods, and the hierarchical clustering techniques.
These approaches treat the two dimensions of the data ma-
trix as instances and features, respectively, and group the
instances into clusters based on all the features. When the
data matrix is re-ordered according to the clustering results,
the re-ordered matrix usually assumes a banded structure
along the instance dimension, since instances in the same
cluster are assumed to be similar, while those in different
cluster are assumed to be dissimilar.

The classical clustering paradigm assumes that all the fea-
tures are equally relevant to all instances. In many appli-
cations, certain group of instances are only similar to each
other with respect to a subset of features. That is, the hid-
den structure of the data matrix can be more accurately
described by a “checkerboard” structure in which a subset
of the rows and a subset of the columns form a block. Co-
clustering, also known as bi-clustering, aims at identifying
the block structures of the data matrix by clustering the
rows and columns of the data matrix simultaneously into
co-clusters [17, 6, 9, 10, 28]. Currently, co-clustering finds
applications in many areas, including biological data analy-
sis [25, 20], text mining [10, 9], and social studies [14].

As a class of powerful methods for unsupervised pattern
mining, existing co-clustering methods invariably assume
that the data matrices are static; that is, they do not evolve
over time. However, in many real-world domains, the pro-
cesses that generated the data are time-evolving. Hence,
the observed data are usually dynamic. As a consequence,
the block structures embedded into the time-varying data
should also evolve smoothly over time. Therefore, it is de-
sirable to incorporate the temporal smoothness constraint
into the co-clustering formalism.

In this paper, we propose an evolutionary co-clustering
formulation for identifying co-clusters from time-varying data.
The proposed formulation employs sparsity-inducing regu-
larization [29] to identify block structures from the time-
varying data matrices. Meanwhile, it applies fused Lasso
type of regularization [30] to encourage temporal smooth-
ness over the block structures identified from contiguous
time points. The proposed formulation is very flexible and



can be applied to encourage temporal smoothness over either
one or both dimensions of the data matrices. The optimiza-
tion problem for the proposed formulation is non-convex,
non-smooth, and non-separable. We propose an iterative
procedure to compute the solution, and each of the iterative
step involves a convex, but non-smooth and non-separable
problem. To enable efficient optimization, we derive the
dual form of this problem and employ a gradient descent
algorithm to solve the smooth dual problem. We evaluate
the proposed formulation using the Allen Developing Mouse
Brain Atlas data [22, 19]. Results show that the proposed
method consistently outperforms other methods by identify-
ing blocks that are consistent with classical neuroanatomy.

The rest of this paper is organized as follows: We intro-
duce the sparse singular value decomposition method for
co-clustering in Section 2. In Section 3, we describe the pro-
posed evolutionary co-clustering formulation. We discuss
related work in Section 4 and report the experimental eval-
uation in Section 5. This paper concludes with conclusions
and future work in Section 6.
Notations: We use boldface lower-case letters, e.g., u, to
denote vectors and upper-case letters, e.g., A, to denote ma-
trices. en denotes a vector of all ones of length n. For a
vector u, its �1-norm, defined as the summation of the ab-
solute values of its components, is denoted as ‖u‖1. For
a matrix A, its Frobenius norm is denoted as ‖A‖F . �
denotes component-wise multiplication, and ⊗ denotes the
Kronecker product. The soft-thresholding operator Tλ, act-
ing on a vector x, is defined component-wise as:

(Tλ(x))i =

⎧⎪⎨
⎪⎩
xi − λ if xi > λ

xi + λ if xi < −λ
0 if |xi| ≤ λ.

(1)

2. SPARSE SINGULAR VALUE DECOMPO-
SITION FOR CO-CLUSTERING

The problem of co-clustering is closely related to the sin-
gular value decomposition (SVD) of the data matrices [9,
36, 21]. In [9, 36], the spectral clustering formalism is ex-
tended to derive a spectral formulation for co-clustering. In
these spectral co-clustering formulations, the data are pro-
jected onto the left and the right singular vector spaces be-
fore they are concatenated and clustered to identify the co-
clusters. Motivated by the relationship between SVD and
co-clustering, a sparse SVD formulation is proposed in [21]
for co-clustering. Formally, let B ∈ R

m×n be a data matrix.
The first singular value and the corresponding left and right
singular vectors of B can be computed as

min
s,p,q

‖B − spqT ‖2F , (2)

where s ∈ R is the first singular value, and p ∈ R
m and

q ∈ R
n are the corresponding left and right singular vectors,

respectively, and ‖ · ‖F denotes the matrix Frobenius norm.
It is well known that the matrix spqT is the optimal rank
one approximation to the matrix B [12]. Note that p and
q lie in the row space and column space, respectively, of B.
In addition, the singular vectors p and q are usually not
sparse; that is, most of their components are nonzero.

Motivated by the optimal rank one approximation prop-
erty of the SVD, a sparse SVD formulation is proposed
in [21]. Furthermore, it is shown that this sparse SVD formu-
lation can be employed for solving co-clustering problems.

Specifically, the following sparsity-inducing formulation is
involved in sparse SVD:

min
s,p,q

1

2
‖B − spqT ‖2F + λ‖sp‖1 + γ‖sq‖1, (3)

where ‖ · ‖ denotes the vector �1-norm, and λ and γ are the
regularization parameters. It is well known that the �1-norm
regularization on p and q encourages sparse solutions [29].
Thus, when λ and γ are set to large values, many entries of
p and q will be set of zero. The regularization parameters
λ and γ control the tradeoff between the quality of the rank
one approximation and the sparsity of p and q, respectively.

It is shown in [21] that the sparse SVD formulation can
be readily employed to solve co-clustering problems. Specif-
ically, the rows and columns of B corresponding to nonzero
entries of p and q, respectively, can be naturally interpreted
to form a co-cluster. If multiple co-clusters are desired, sub-
sequent co-clusters can be identified by removing the rank
one approximation from the data matrix and solving the
optimization problem in Eq. (3) using the residual matrix.
It is shown that this sparse SVD method outperforms prior
co-clustering methods by identifying distinctive gene expres-
sion profiles corresponding to various pathological conditions
from a microarray gene expression data set.

The optimization problem in Eq. (3) is non-convex and
non-smooth. An iterative procedure has been developed
in [21] to compute the solution. In this procedure, one of the
vector variables is fixed while the other one is optimized, and
this process is alternated between the two vector variables
until it converges to a locally optimal solution. Specifically,
when p is fixed, q can be computed by solving

min
q̃
F (q̃) ≡ 1

2
‖B − pq̃T ‖2F + γ‖q̃‖1, (4)

where q̃ = sq. After q̃ is obtained, we have s = ‖q̃‖ and
q = q̃/s. Similarly, when q is fixed, the following problem
is involved:

min
p̃
G(p̃) ≡ 1

2
‖B − p̃qT ‖2F + λ‖p̃‖1, (5)

and p = p̃/s where s = ‖p̃‖. It can be shown that the
problems in Eqs. (4) and (5) are convex and can be solved
analytically.

The objective function in Eq. (4) can be written as

F (q̃) =
1

2
‖B − pq̃T ‖2F + γ‖q̃‖1

=
1

2
Tr (BTB)− pTBq̃+

1

2
q̃T q̃+ γ‖q̃‖1. (6)

Taking the subdifferential of Eq. (6) with respect to q̃, we
have

∂F (q̃) = −BTp+ q̃+ γ SGN(q̃), (7)

where SGN(·) is defined component-wise as

(SGN(q̃))i =

⎧⎪⎨
⎪⎩
{1} if (q̃)i > 0

{−1} if (q̃)i < 0

[−1, 1] if (q̃)i = 0.

(8)

Note that the subdifferential of a function is a set, and when
the function is differentiable, the set is a singleton containing
the derivative [27]. It follows from the optimality condition
for unconstrained problems [27] that q̃∗ is an optimal solu-
tion to Eq. (4) if and only if 0 ∈ ∂F (q̃∗). Hence, it can be
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Figure 1: Illustration of the evolutionary co-
clustering problem.

easily verified that the optimal q̃∗ is given by

(q̃∗)i =

⎧⎪⎨
⎪⎩
(BTp− γ)i if (BTp)i > γ

(BTp+ γ)i if (BTp)i < −γ
0 if |(BTp)i| ≤ γ.

(9)

Similarly, the optimal p̃∗ for the optimization problem in
Eq. (5) is given by

(p̃∗)i =

⎧⎪⎨
⎪⎩
(Bq− λ)i if (Bq)i > λ

(Bq+ λ)i if (Bq)i < −λ
0 if |(Bq)i| ≤ λ.

(10)

The iterative procedure in [21] applies Eqs. (9) and (10)
alternately until a locally optimal solution is reached.

3. EVOLUTIONARY CO-CLUSTERING
In the traditional co-clustering framework [17, 6, 9, 20,

28, 25], we assume that the data matrix is time-invariant;
that is, it does not evolve along the temporal dimension. In
many application domains, each data matrix is usually asso-
ciated with a particular time point, and it evolves smoothly
over time as shown in Figure 1. For example, in the devel-
oping mouse brain gene expression analysis, the spatial gene
expression patterns at a particular developing time point is
captured by a data matrix in which one dimension corre-
sponds to the genes and the other dimension corresponds
to the spatial locations. Since gene regulation acts sequen-
tially, the expression patterns usually evolves smoothly over
time, thereby resulting a series of time-stamped data matri-
ces, one for each sampled developing time point. A simple
approach for mining these time-evolving data matrices is to
treat the data matrices at different time points separately.
This approach, however, ignores the time-dependent nature
of the underlying process, thereby yielding results that are
not amenable to domain interpretation. In this paper, we
propose an evolutionary co-clustering formulation for uncov-
ering patterns from time-evolving data matrices. The pro-
posed formulation encourages smooth changes in the row
and/or column patterns over time, thereby capturing the
time-evolving nature of the underlying process faithfully.
The proposed framework is very flexible and can be applied
to applications in which only one dimension of the data ma-
trices evolves.

Given a set of time-evolving data matrices Ai ∈ R
m×n for

i = 1, · · · , t, where t is the number of sampled time points,
we are interested in identifying block structures from each
of the data matrices. A simple approach is to compute the
sparse SVD for each data matrix separately, leading to the

following optimization problem:

min
si,ui,vi

t∑
i=1

{
1

2
‖Ai − siuiv

T
i ‖2F + λ‖siui‖1 + γ‖sivi‖1

}

where ui ∈ R
m and vi ∈ R

n are associated with the rows
and columns, respectively, of Ai, and si is the corresponding
singular value. However, this approach decouples the data
matrices for contiguous time points and ignores the temporal
evolving nature of the underlying process that generated the
data matrices.

3.1 The Proposed Formulation
To incorporate the temporal smoothness constraints into

the co-clustering framework, we propose the following sparsity-
inducing evolutionary co-clustering formulation:

min
si,ui,vi

t∑
i=1

{
1

2
‖Ai − siuiv

T
i ‖2F + λ‖siui‖1 + γ‖sivi‖1

}
(11)

+

t−1∑
i=1

{η‖si+1ui+1 − siui‖1 + ξ‖si+1vi+1 − sivi‖1} ,

where η and ξ and tunable parameters. In this formula-
tion, the last two regularization terms are fused Lasso type
of regularization [30], and they encourage the ui and vi for
contiguous time points to be similar. Specifically, these reg-
ularization terms encourage the differences of contiguous ui

and vi to be zero, thus enforcing many entries of contiguous
ui and vi to be identical. These fused Lasso type of reg-
ularization naturally incorporates the time-evolving nature
of the data matrices by encouraging the block structures
for contiguous time points to be similar. Note that we can
also encourage only the rows or the columns of the block
structures to be similar by setting either ξ or η to zero.

The objective function in Eq. (11) can be expressed equiv-
alently as

t∑
i=1

1

2
‖Ai − siuiv

T
i ‖2F +λ‖ũ‖1 + γ‖ṽ‖1 + η‖Eũ‖1 + ξ‖F ṽ‖1,

where ũ = (s⊗em)�u, s = [s1, s2, · · · , st]T , ṽ = (s⊗en)�v,
u = [uT

1 ,u
T
2 , · · · ,uT

t ]
T ∈ R

mt, v = [vT
1 ,v

T
2 , · · · ,vT

t ]
T ∈

R
nt, E ∈ R

m(t−1)×mt and F ∈ R
n(t−1)×nt are defined as

(E)ij =

⎧⎪⎨
⎪⎩
−1 if j = i, i = 1, · · · ,m(t− 1)

1 j = i+m, i = 1, · · · ,m(t− 1)

0 otherwise,

(12)

(F )ij =

⎧⎪⎨
⎪⎩
−1 if j = i, i = 1, · · · , n(t− 1)

1 j = i+ n, i = 1, · · · , n(t− 1)

0 otherwise.

(13)

The objective function in Eq. (11) is non-convex and non-
smooth. In addition, the fused Lasso regularization terms
are non-separable [33, 13]. We propose an iterative proce-
dure to compute u and v. Specifically, we optimize u by
fixing v and then optimize v by fixing u. This iterative
process is repeated until convergence. In the following, we
discuss the detailed procedure of computing v when u are
fixed. The other case can be derived in a similar way. Specif-
ically, when u are fixed, ṽ can be computed by solving the



following optimization problem:

min
ṽ
fγ
ξ (ṽ) ≡

t∑
i=1

1

2
‖Ai − uiṽ

T
i ‖2F + γ‖ṽ‖1 + ξ‖F ṽ‖1. (14)

The objective function in Eq. (14) is convex, but non-smooth
and non-separable. In the following, we develop an efficient
algorithm to compute the optimal ṽ∗.

3.2 A Two-Step Procedure
A central challenge for solving the optimization problem

in Eq. (14) is the �1-norm and the fused Lasso regulariza-
tion terms, which are non-smooth and non-separable. A key
property that leads to an efficient algorithm to this problem
is that the �1-norm term and the fused Lasso term can be
solved sequentially in two steps, giving rise to a two-step
procedure. This result is originally given in [13, 24] and is
summarized in the following theorem:

Theorem 3.1. Define

πγ
ξ (u) = argmin

ṽ
fγ
ξ (ṽ). (15)

Then for any γ, ξ ≥ 0, we have

πγ
ξ (u) = Tγ

(
π0
ξ(u)

)
. (16)

Proof. We consider the case when γ = 0:

π0
ξ (u) = argmin fξ(ṽ), (17)

where

fξ(ṽ) ≡ f0
ξ (ṽ) =

t∑
i=1

1

2
‖Ai − uiṽ

T
i ‖2F + ξ‖F ṽ‖1. (18)

The subdifferentials of fγ
ξ (ṽ) and fξ(ṽ) can be computed as

∂fγ
ξ (ṽ) = ṽ − ATu+ γ SGN(ṽ) + ξF T SGN(F ṽ), (19)

∂fξ(ṽ) = ṽ − ATu+ ξF T SGN(F ṽ), (20)

where

A =

⎛
⎜⎜⎜⎝
A1 0

A2

. . .

0 At

⎞
⎟⎟⎟⎠ ∈ R

mt×nt. (21)

It follows from the optimality condition for unconstrained
problems [27] that

0 ∈ ∂fξ
(
π0
ξ(u)

)
.

Hence, there exists

y∗ ∈ ξ SGN(Fπ0
ξ(u)) (22)

such that π0
ξ (u) = ATu− F Ty∗. Define

a = Tγ(π
0
ξ(u)),

b = sgn(π0
ξ(u))�min(|π0

ξ (u)|, γ),
where sgn(x) is defined component-wise as (sgn(x))i = 1 if
xi > 0, (sgn(x))i = −1 if xi < 0, and 0 otherwise. It can be
verified that a−ATu+b+F Ty∗ = 0 and b ∈ γ SGN(a). It
follows from the definition of a, the fact that each row of F
consisting of two nonzero elements 1 and −1, and Eq. (22)
that y∗ ∈ ξ SGN(Fa). Therefore, we have

0 = a− ATu+ b+ F Ty∗ ∈ ∂fγ
ξ (a).

This completes the proof of this theorem.

Theorem 3.1 shows that we can solve the optimization
problem in two sequential steps. Specifically, we can first
solve the problem in Eq. (14) with γ = 0 to obtain the
intermediate solution π0

ξ(u). Then the final optimal solution
πγ
ξ (u) can be obtained by applying the soft thresholding

operator to the intermediate solution as in Eq. (16). We
now discuss how the γ = 0 case can be solved efficiently in
its dual form.

3.3 The Dual Formulation
A key to the two-step procedure in Section 3.2 is to solve

the optimization problem in Eq. (17), which can be rewritten
in its full form as

min
ṽ
fξ(ṽ) ≡

t∑
i=1

1

2
‖Ai − uiṽ

T
i ‖2F + ξ‖F ṽ‖1. (23)

We propose to solve this problem in its dual form. To this
end, we introduce the dual variable

w = [wT
1 ,w

T
2 , · · · ,wT

t−1]
T ∈ R

n(t−1)

and obtain the following equivalent min-max problem:

min
ṽ

max
‖w‖∞≤ξ

φ(ṽ,w) ≡
t∑

i=1

1

2
‖Ai−uiṽ

T
i ‖2F +〈F ṽ,w〉 . (24)

The existence of the saddle point to this min-max problem is
guaranteed by the Von Neumann Lemma [26], because φ(·, ·)
is differentiable, convex in ṽ, and concave in w. Exchanging
the min and max and setting the derivative of φ(ṽ,w) with
respect to ṽ to zero, we obtain

ṽ = ATu− F Tw. (25)

Substituting Eq. (25) into Eq. (24), we obtain the following
dual problem:

min
w:‖w‖∞≤ξ

ψ(w) ≡ 1

2
‖F Tw‖2 −

〈
ATu, F Tw

〉
− c, (26)

where c = 1
2

∑t
i=1 Tr

(
(Ai − uiu

T
i Ai)(Ai − uiu

T
i Ai)

T
)
. Note

that we have changed max to min in Eq. (26) by negating
the objective function for ease of presentation. The dual
formulation in Eq. (26) is convex and smooth. Hence, it can
be solved by gradient descent algorithms.

3.4 A Gradient Descent Algorithm
The dual problem in Eq. (26) is a constrained quadratic

program (QP) and can be solved by general QP solvers.
However, direct application of general QP solvers would ig-
nore the special structure of this problem, incurring exces-
sive computational cost. In this paper, we propose to solve
this dual formulation by a gradient descent algorithm, since
the objective function is differentiable. Note that the Hes-
sian of ψ(w) is a n(t− 1) × n(t− 1) matrix and can be ex-
press as

(n−1) 0s︷︸︸︷

FF T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 · · · −1 · · · · · · 0
... 2 · · · −1 · · · 0

−1
...

. . . · · ·
. . .

...
... −1

...
. . . · · · −1

...
...

. . .
...

. . .
...

0 0 · · · −1 · · · 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (27)



Since F is a full rank matrix, the Hessian matrix FF T is
positive definite. Thus a unique solution exists for the opti-
mization problem in Eq. (26).

In this gradient descent algorithm, we have the following
iterative update in each iteration:

wk+1 = P‖·‖∞≤ξ

(
wk − 1

λmax
gk

)
, (28)

where gk = ψ′(wk) = FF Twk − FATu is the gradient of
the objective function at wk, λmax is the largest eigenvalue
of the Hessian matrix FF T , and

(
P‖·‖∞≤ξ(x)

)
i
=

{
xi if |xi| ≤ ξ

sgn(xi)ξ if |xi| > ξ
(29)

is the projection onto the feasible region. It follows from the
analysis in [27] that this algorithm has a linear convergence
rate as

‖wk −w∗‖2 ≤
(
1− λmin

λmax

)k

‖w0 −w∗‖2, (30)

where w0 is the initial starting point, and λmin denotes the
smallest eigenvalue of the Hessian matrix. This algorithm
can also be accelerated by the Nesterov’s method [27].

3.5 Duality Gap and Convergence
The gradient descent algorithm is an iterative procedure,

and thus a criterion is required to assess the convergence of
the algorithm. Following [24], we define a duality gap for the
min-max problem in Eq. (24) and derive a simple equation
for computing the duality gap in each iteration. We use this
duality gap as the stopping criterion in our experiments, and
the gradient descent algorithm returns when the duality gap
is smaller than 10−8.

Let w̄ be an appropriate solution computed by the gra-
dient descent algorithm. Note that ‖w̄‖∞ ≤ ξ, as it has
been projected onto the feasible region in each step. Let
v̄ = ATu− F T w̄ be the corresponding solution for the pri-
mal formulation. We can define the duality gap for Eq. (24)
at (v̄, w̄) as

dg(v̄, w̄) = max
w:‖w‖∞≤ξ

φ(v̄,w)−min
ṽ
φ(ṽ, w̄). (31)

The following results show that the duality gap in Eq. (31)
is an upper bound for the errors in both the primal and the
dual formulations. In addition, it can be computed easily
by a simple equation.

Theorem 3.2. The duality gap defined in Eq. (31) can
be computed as

dg(v̄, w̄) = ξ‖ψ′(w̄)‖1 +
〈
w̄, ψ′(w̄)

〉
. (32)

In addition, we have the following results:

ψ(w̄)− ψ(w∗) ≤ dg(v̄, w̄), (33)

fξ(v̄)− fξ(v
∗) ≤ dg(v̄, w̄). (34)

The proof of this theorem is similar to that of Theorem 3
in [24] and is thus omitted.

3.6 Regularization Parameter Interval
The regularization parameter ξ controls the temporal smooth-

ness over vi. That is, when ξ is larger than a certain value
ξmax, vi and vi+1, for i = 1, 2, · · · , t− 1, will be enforced to

be identical. We show that such a ξmax can be computed via
solving a linear system of equations. To this end, we need to
state the optimality condition for the problem in Eq. (26).

It follows from the optimality condition for constrained
problems [27] thatw∗ (‖w∗‖∞ ≤ ξ) is a minimizer of Eq. (26)
if and only if〈

ψ′(w∗),w −w∗〉 ≥ 0, ∀w : ‖w‖∞ ≤ ξ. (35)

This is the well-known variational inequality, and it gives the
optimality condition for constrained optimization problems.

Based on the above result, we show that ξmax can be com-
puted via solving a linear system of equations with a special
structure.

Theorem 3.3. Let ŵ denote the unique solution of the
linear system

FF Tw = FATu, (36)

and let

ξmax = ‖ŵ‖∞. (37)

Then for any ξ ≥ ξmax, we have ṽi = ṽj, ∀ i, j.
Proof. Since the Hessian of ψ(·) is positive definite, the

linear system in Eq. (36) has a unique solution ŵ. For any
ξ ≥ ξmax, it can be easily verified that ‖ŵ‖∞ = ξmax ≤ ξ
and ψ′(ŵ) = FF T ŵ− FATu = 0. It follows from the opti-
mality condition in Eq. (35) that ŵ is the optimal solution
to Eq. (26) when ξ ≥ ξmax. In addition, when ξ ≥ ξmax, we
have πξ(u) = ATu− F T ŵ from Eq. (25). It follows that

Fπξ(u) = F (ATu− F T ŵ) = 0.

Therefore, we have ṽi = ṽj , ∀ i, j.

The value of ξmax can be used to guide the selection of an
appropriate value for ξ in practice. We evaluate the effec-
tiveness of ξ in the experiments and observe that the best
performance is achieved when ξ = ξmax on the biological
data sets.

4. RELATED WORK
Simultaneous row and column clustering for identifying

block structures from matrix data has been initially studied
in [17]. Recent surge of interests in co-clustering is moti-
vated by biological applications, which aim at identifying
subset of genes co-expressed in a subset of samples from
microarray gene expression data [6]. Co-clustering has also
been applied in many other applications, including simulta-
neous clustering of words and documents [10, 9], authors and
conference [32], etc. Early work on co-clustering focuses on
defining an error measure and then identifying blocks that
minimize this measure using heuristic search algorithms [17,
6]. These early work has recently been reformulated us-
ing matrix and optimization techniques [8]. Following the
spectral clustering formalism, it has been shown recently
that co-clustering is closely related to the singular value de-
composition (SVD) of the data matrix [4]. In [9, 36], co-
clustering is formulated as a bipartite graph cut problem,
and the data are projected onto the left and right singular
vector spaces before they are concatenated and clustered to
identify row and column co-clusters. It is shown in [21] that
sparsity-inducing regularization can be employed to com-
pute sparse singular vectors, which in turn can be used to
form co-clusters.
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Figure 2: Sample slices of the 3D expression patterns for the gene Neurog1 across seven developmental ages
shown in the coronal view.

Table 1: Statistics of the Allen Developing Mouse Brain Atlas data used in the experiments. For each
developing age, the data consist of a matrix in which one dimension corresponds to the brain voxels while the
other dimension corresponds to the genes. This data set contains 7 developing ages, 4 of them are embryonic
ages (denoted as E followed by the age in terms of days) and three are postnatal ages (denoted as P followed
by the age). In addition, each voxel is annotated to a brain region manually. The number of genes, voxels,
and brain regions for each age are summarized in this table.

Ages E11.5 E13.5 E15.5 E18.5 P4 P14 P28

# of genes 1798 1798 1798 1798 1798 1798 1798
# of voxels 12949 17351 13454 12394 22170 25048 28333
# of regions 159 242 262 89 90 94 222

This work is also related to recent studies on mining from
time-evolving data, which is becoming an increasingly im-
portant topic. Chakrabarti et al. [5] first proposed the con-
cept of evolutionary clustering and extended the K-means
and the hierarchical clustering algorithms for uncovering
smooth patterns from time-evolving data matrices. In [7],
the spectral clustering formalism is systematically extended
to the evolutionary setting by incorporating a temporal cost
into the objective function, leading to a suite of formulations
for evolutionary spectral clustering. In [23], the nonnega-
tive matrix factorization is employed for soft clustering, and
a temporal cost is included for mining from time-evolving
data. Evolutionary nonnegative matrix factorization is also
studied in [34].

The fused Lasso penalty was originally proposed in [30] for
encouraging smoothness over related coefficients in regres-
sion problems. This type of penalty is very attractive and
has been applied for encouraging smoothness over spatial
and temporal smoothness in many applications, including
biological data analysis [31] and social studies [1]. A critical
challenge in employing the fused Lasso formalism is that this
class of penalty is non-smooth and non-separable and thus
is very challenging to optimize. In [13], a modified coordi-
nate descent algorithm is developed to solve the fused Lasso
formulation. However, this algorithm is not guaranteed to
give the exact solution. In [18], a path algorithm is pro-
posed to solve the fused Lasso signal approximator. Instead
of solving the original primal problem, Liu et al. developed
a dual formulation for the fused Lasso signal approximator
and devised a gradient descent algorithm for computing the
dual solution [24].

The formulation proposed in this work is radically dif-
ferent from the evolutionary clustering and matrix factor-
ization formalisms studied in the literature [5, 7, 23, 34].
The differences lie in both the studied problems and in the
adopted approaches. Specifically, the existing evolutionary
methods deal with clustering problems while our work is
concerned with co-clustering problem. Indeed, to the best

of our knowledge, our work is the first systematic study of
co-clustering on time-varying data. In addition, our work
is based on the optimization framework of sparsity-inducing
formulations, while the current evolutionary clustering meth-
ods is mostly motivated by matrix decomposition techniques.

5. EXPERIMENTAL EVALUATION

5.1 Experimental Setup
We evaluate the proposed evolutionary co-clustering for-

mulation using the Allen Developing Mouse Brain Atlas
data, which are publicly available1. This data set contains
in situ hybridization gene expression pattern images in the
developing mouse brain across 7 developmental ages (see
Figure 2). The 3D images are registered to a reference at-
las separately for each age, and a regular grid is applied to
partition the 3D brain space into voxels. The expression en-
ergy within each voxel is given as a numerical value. The
statistics of the data are summarized in Table 1. There is
one data matrix associated with each of the 7 developing
ages. The rows of the matrices correspond to brain voxels
while the columns correspond to genes. Note that the brain
voxels are not registered across ages, and the data for each
age contain different number of voxels. Hence, we only ap-
ply the fused Lasso regularization over the columns (genes);
that is, we set η = 0. This is one of the unique advantages
of the proposed formulation in which the smoothness con-
straint can be applied to either or both dimensions. We use
the duality gap as the stopping criterion for the gradient
descent algorithm and the error tolerance is set to 10−8 in
the experiments.

To measure the co-clustering performance, we consider
the annotated brain region of each voxel as its class and
compare the clustering results with the region labels of vox-
els, since it has been shown that the results of gene ex-
pression data clustering are largely consistent with classi-

1http://developingmouse.brain-map.org/
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Figure 3: Performance of the proposed method
(ξ = ξmax), denoted as CCevol, in comparison with
three other methods measured using the S index.
CCSVD denotes the co-clustering method based on
SVD proposed in [21]; CCspectral denotes the spec-
tral co-clustering method proposed in [9]; K-means
denotes the K-means method applied to gene ex-
pression vectors of each voxel.

cal neuroanatomy [3]. Following [2, 3], the S index is used
to quantitatively measure the correspondence of the clus-
tering results with the classical neuroanatomy reflected in
the region annotations. Specifically, let R = {r1, · · · , rN}
be a partition of the set of brain voxels in which each ri
comprises the set of indices of the voxels that map to that
cluster (or anatomical label). The spatial overlap between a
region from the annotation and the clustering result is de-
fined as: Pij = |ri ∩ rj |/|rj |. From the Pij values that are
computed over all pairs of brain regions and cluster result,
we can then derive a global scalar index of similarity be-
tween the two partitions. Since Pij = Pji, Xij is defined as
Xij = max{Pij , Pji} along with Wij = Uij/

∑
Uij , where

Uij = min{|ri|, |rj |} if Xij > 0 and 0 otherwise. Finally, the
S index is defined as S = 1 − 4

∑
ij WijXij(1 − Xij). The

S index lies in [0,1], and larger value indicates higher con-
sistency between the clustering results and the annotated
regions.

5.2 Co-Clustering Performance Evaluation
To evaluate the performance of the proposed evolution-

ary co-clustering method, we compare the proposed method
with two other co-clustering methods and one clustering
method. The two co-clustering methods are the one based
on sparse SVD in [21] and the spectral co-clustering method
proposed in [9, 36]. We also compare our method with the
K-means algorithm when it is applied to cluster the voxels
of the data set for each age separately. Note that the evo-
lutionary clustering methods [5, 7, 23] cannot be applied to
this data set, since the brain voxels are not registered across
ages.

The performance of the four methods on the seven data
sets is reported in Figure 3. We observed that the best per-
formance is achieved when ξ = ξmax and report the results
under this parameter setting. Detailed studies on parameter
sensitivity are reported in Section 5.3. It can be observed
from Figure 3 that the proposed evolutionary co-clustering
method outperforms other compared methods consistently
across all seven data sets, demonstrating that incorporation
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Figure 4: Performance of the proposed method as
the value of the fused Lasso regularization parame-
ter ξ increases. The performance is measured using
the S index and is averaged across the 7 data sets.

of the smoothness constraints between contiguous age data
yield improved performance. We can also observe that co-
clustering based methods consistently outperform clustering
based method. This result is in accordance with the com-
mon observation that co-clustering of gene expression data
usually leads to improved performance. In addition, the
co-clustering method based on sparse SVD outperforms the
spectral co-clustering method on all seven data sets.

5.3 Parameter Sensitivity Evaluation
In order to fully understand how the fused Lasso regu-

larization parameter ξ affects the performance, we conduct
a series of experiments and report the results in the follow-
ing. We first investigate how the performance changes as the
value for ξ changes. To this end, we vary the value for ξ from
0.01 to ξmax = 104 and report the performance on each data
set in Table 2 and summarize the average performance across
data sets in Figure 4. We can observe that the performance
improves in general as the value for ξ increases. Indeed,
the proposed formulation achieves the highest performance
when ξ = ξmax. This demonstrate that incorporation of the
fused Lasso regularization is very effective in boosting the
performance.

To evaluate the effectiveness of the fused Lasso regular-
ization in encouraging smoothness over the temporal dimen-
sion, we again vary ξ from 0.01 to 104 and report the �1-norm
differences between temporally adjacent variable vectors in
Figure 5. We can observe that, as ξ increases, the values for
the fused Lasso regularization terms decrease monotonically
until they reach zero, where the adjacent variables are forced
to be identical.

We also evaluate the effectiveness of the defined duality
gap in determining the convergence of the gradient descent
algorithm. To this end, we plot the values of the duality gap
in the first 50 iterations of the gradient descent algorithm
under multiple ξ values in Figure 6. We can observe that
the duality gap decreases monotonically in all cases. In addi-
tion, as the value of ξ increases, the duality gap approaches
zero at a slower speed. This is because more computations
are required to fuse adjacent variables when the value for ξ
increases. We use the duality gap as the stopping criterion
in all experiments, and the error tolerance is set to 10−8.



Table 2: Performance of the proposed method (measured using the S index) on the seven data sets as ξ
increases from 0.01 to ξmax = 104. The data are publicly available at http://developingmouse.brain-map.org
and the statistics are given in Table 1

ages\ξ 10−2 10−1 1 5 10 25 50 75 100 250 500 750 103 104

E11.5 0.769 0.766 0.775 0.765 0.772 0.781 0.791 0.801 0.801 0.824 0.814 0.823 0.818 0.829
E13.5 0.736 0.738 0.730 0.730 0.735 0.754 0.757 0.779 0.797 0.815 0.805 0.816 0.818 0.820
E15.5 0.729 0.717 0.730 0.745 0.748 0.760 0.776 0.773 0.784 0.812 0.796 0.812 0.798 0.815
E18.5 0.840 0.843 0.835 0.842 0.848 0.845 0.854 0.839 0.847 0.866 0.842 0.857 0.856 0.863
P4 0.855 0.852 0.843 0.843 0.848 0.863 0.864 0.863 0.868 0.872 0.865 0.871 0.862 0.875
P14 0.807 0.830 0.850 0.838 0.834 0.842 0.837 0.831 0.846 0.873 0.867 0.869 0.877 0.886
P28 0.796 0.797 0.799 0.824 0.804 0.800 0.801 0.782 0.810 0.833 0.823 0.823 0.831 0.834
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Figure 5: The values of the fused Lasso regulariza-
tion terms as ξ increases.

In all cases, the duality gap is reduced below the tolerance
level within a relatively small number of iterations.

6. CONCLUSIONS AND DISCUSSIONS
In this paper, we propose an evolutionary co-clustering

method for identifying block structures from time-evolving
data. The proposed formulation employs the fused Lasso
type of regularization to encourage the smoothness of the
block structures, and it is applicable to scenarios in which
only one sides of the blocks are required to be temporally
smooth. The resulting optimization problem is non-convex,
non-smooth, and non-separable, and we employ an iterative
procedure to compute the solution. Each step of the iter-
ative procedure involves a convex problem. We derive the
dual form of this problem and employ a gradient descent al-
gorithm to compute the dual optimal solution. Experimen-
tal results on the Allen Developing Mouse Brain Atlas data
show that the proposed method yields consistently higher
performance in comparison to other methods.

It has been shown that nonnegative matrix factorization
(NMF) can be used for clustering [11] and co-clustering [35].
However, to the best of our knowledge, NMF has not been
employed to perform evolutionary co-clustering. We plan
to investigate how NMF [15, 16] can be adapted for co-
clustering on time-evolving data. In this paper, we solve
the dual form of the convex problem in each iteration. In
the literature, coordinate descent and path algorithms have
been developed to solve the fused Lasso signal approxima-
tor. We will explore and compare other alternative meth-
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Figure 6: The duality gap in the first 50 iterations
for different ξ values.

ods for solving this convex problem. This paper focuses on
evaluating the proposed method on the mouse brain gene
expression data, but this method can be applied to many
other domains. We plan to apply our method to other data
sets in the future.
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