CS 381 Solutions to Homework 10

pp. 527-529

4
b) Reflexive, symmetric, not antisymmetric, and transitive.
d) Reflexive, symmetric, not antisymmetric, and not transitive.

28
b) R_{1},
c) \emptyset

30
$\{<1,1\rangle,<1,2\rangle,<2,1\rangle,<2,2\rangle\}$.
For example $<1,2>$ in R and $<2,1>$ in S produce $<1,1>$ in $S \circ R$, and $<1,3>$ in R and $<3,2>$ in S produce $<1,2>$ in $S \circ R$.

48
b) Since R and S are reflexive, for an arbitrary $x \in A,(x, x) \in R$ and $(x, x) \in S$.
Hence for an arbitrary $x \in A,(x, x) \in R \cap S$. Hence $R \cap S$ is reflexive.
pp. 544
32.

$\#$	Reflexive	Irreflexive	Symmetric	Antisymmetric	Transitive
26	Yes	No	No	No	No
27	No	No	Yes	No	No

pp. 553-554
2. R is symmetric. Hence it is its own symmetric closure.
9. Symmetric closure of 5: $\{(a, b),(b, a),(a, c),(c, a),(b, d),(d, b),(c, d),(d, c)\}$
$20 \mathrm{~b})(a, b)$ in R^{3} means that there is a two-stop (three leg) airline flight from city a to city b.
24. Not necessarily. For example let $R=\{\langle a, b\rangle,\langle b, a\rangle\}$ on the set $\{a, b\}$. Then $\left.\left.R^{2}=\{<a, a\rangle,<b, b\right\rangle\right\}$, which is not irreflexive.

