CS 381 Solutions to Homework 6

pp. 125 - 126

- 6. $B \subset A, C \subset A, C \subset D$
- 10. (c) is false and the rest are true.
- 20. (a) 0, (b) 1, (c) 2, (d) 3.

24. (b) and (d) (d)

pp. 136 - 137

16 (e) For an arbitrary x, $x \in A \cup (B - A) \Leftrightarrow x \in A \lor (x \in B \land \neg x \in A)$ $\Leftrightarrow (x \in A \lor x \in B) \land (x \in A \lor \neg x \in A)$ $\Leftrightarrow (x \in A \lor x \in B) \land True$ $\Leftrightarrow (x \in A \lor x \in B)$ $\Leftrightarrow x \in A \cup B$ Hence $A \cup (B - A) = A \cup B$

20 (a) For an arbitrary element x, if $x \in B$, then by addition $x \in A \lor x \in B$. Hence $B \subseteq A \cup B$. — (1) Also if $x \in A \cup B$, then $x \in A \lor x \in B$. If $x \in A$, then since $A \subseteq B$ by the hypothesis, $x \in B$. Hence $A \cup B \subseteq B$. — (2) Hence by (1) and (2), $A \cup B = B$. 30 (c) Suppose that $A \neq B$. Then without loss of generality we can say that $\exists x (x \in A \land \neg x \in B)$. For that $x, x \in A \cap C$ or $\neg x \in A \cap C$. Case 1: If $x \in A \cap C$, then $x \in B \cap C$. Hence $x \in B$ and $x \in C$. That contradicts the assumption that $\neg x \in B$.

Case 2: If $\neg x \in A \cap C$, then $x \in A \land \neg x \in C$. Hence $\neg x \in C$. Since $x \in A, x \in A \cup C$. Hence $x \in B \cup C$ by one of the hypotheses, which means that $x \in B$, since $\neg x \in C$. But that contradicts the assumption that $\neg x \in B$. Hence from cases 1 and 2 A = B.