CS 381 Solutions to Homework 8

pp. 329-331
8. Basis Step: When $n=0$, the left hand side(LHS) is equal to 2 , and the right hand side(RHS) is $(1-(-7)) / 4=8 / 4=2$.
Hence LHS $=$ RHS.
Inductive Step: Assume that it is true for n, that is $2-2 \cdot 7+\ldots+2 \cdot(-7)^{n}=\left(1-(-7)^{n+1}\right) / 4$
For $n+1,2-2 \cdot 7+\ldots+2 \cdot(-7)^{n}+2 \cdot(-7)^{n+1}=\left(1-(-7)^{n+1}\right) / 4+2 \cdot(-7)^{n+1}$ $=\left(1-(-7)^{n+1}+8 \cdot(-7)^{n+1}\right) / 4=\left(1+7 \cdot(-7)^{n+1}\right) / 4=\left(1-(-7)(-7)^{n+1}\right) / 4=$ $\left(1-(-7)^{n+2}\right) / 4$. QED
22. We can prove by mathematical induction that if $n \geq 4$, then $n^{2} \leq n$!.

Basis Step: If $n=4$, then $4^{2}=16$ and $4!=24$.
Hence $4^{2} \leq 4$!.
Inductive Step: Assume that $n^{2} \leq n!$.
For $n+1$, we need to prove that $(n+1)^{2} \leq(n+1)$!.
For that, it is sufficient to prove that $(n+1) \leq n$!.
Since $n \geq 4, n+1 \leq 2 n$. But $2 n \leq n!$ since $n \geq 4$.
Hence $n+1 \leq n$!. Hence $(n+1)^{2} \leq(n+1)$!.
36. Basis Step: If $n=1$, then $4^{2}+5=21$, which is divisible by 21 .

Inductive Step: Assume that $4^{n+1}+5^{2 n-1}=21 k$ for some integer k.
For $n+1,4^{n+2}+5^{2 n+1}=4 \cdot 4^{n+1}+5^{2} \cdot 5^{2 n-1}$
$=4\left(4^{n+1}+5^{2 n-1}\right)+21 \cdot 5^{2 n-1}=4 \cdot 21 k+21 \cdot 5^{2 n-1}$
$=21\left(4 k+5^{2 n-1}\right)$, which is divisible by 21 because $4 k$ and $5^{2 n-1}$ are integers.
39. Basis Step: When $n=1, \cap_{j=1}^{1} A_{j}=A_{1}$, and $\cap_{j=1}^{1} B_{j}=B_{1}$.

Since $A_{1} \subseteq B_{1}, \cap_{j=1}^{n} A_{j} \subseteq \cap_{j=1}^{n} B_{j}$
Before proceeding further let us prove the following claim:
Claim: If $B \subseteq C$, then $B \cap A \subseteq C \cap A$.
Proof of Claim: For an arbitrary element $x, x \in B \cap A \leftrightarrow x \in B \wedge x \in A$
Since $B \subseteq C$, this implies that $x \in C \wedge x \in A$. Hence $x \in B \cap A \rightarrow x \in C \cap A$.
Inductive Step: Assume that $\cap_{j=1}^{n} A_{j} \subseteq \cap_{j=1}^{n} B_{j}$.
For $n+1, \cap_{j=1}^{n+1} A_{j}=\left(\cap_{j=1}^{n} A_{j}\right) \cap A_{n+1} \subseteq\left(\cap_{j=1}^{n} B_{j}\right) \cap A_{n+1} \subseteq\left(\cap_{j=1}^{n} B_{j}\right) \cap B_{n+1}$ by the claim applied twice.
But $\left(\cap_{j=1}^{n} B_{j}\right) \cap B_{n+1}=\cap_{j=1}^{n+1} B_{j}$. Hence $\cap_{j=1}^{n+1} A_{j} \subseteq \cap_{j=1}^{n+1} B_{j}$.
p. 342
8. It can be easily verified that only $25,40,50,65,75,80,90,100,105,115,120,125$ and 130 can be obtained by using 25 s and 40 s if it is less thatn 140 .
For any number not less than 140, we can show that if n is obtained by using 25 s and 40 s, then $(n+5)$ is obtained by using them.
Proof: Basis Step: If $n=140$, then $140=4 \cdot 25+40$.
Inductive Step: Assume that n can be expressed as $25 k+40 m$ for some natural numbers k and m.
Then $n+5=25 k+40 m+5=25(k-3)+40(m+2)$ if $k \geq 3$.
Thus $k=0,1$, or 2 . Let us consider them one by one.
(1) $k=0$: In this case $n=40 \mathrm{~m}$. Since $n \geq 140, m>3$.

Hence $n+5=40 m+5=40(m-3)+125=40(m-3)+5 \cdot 25$
(2) $k=1$: In this case $n=25+40 m$. Since $n \geq 140, m \geq 3$.

Hence $n+5=40(m-3)+150=40(m-3)+6 \cdot 25$.
(3) $k=2$: In this case $n=50+40 m$. Since $n \geq 140, m \geq 3$.

Hence $n+5=40(m-3)+175=40(m-3)+7 \cdot 25$.
Hence in all cases $n+5$ is expressed as $25 k+40 m$ for some natural numbers k and m.
p. 357
$4(\mathrm{~b}) f(2)=f(3)=f(4)=f(5)=1$
(c) $f(2)=2, f(3)=5, f(4)=33, f(5)=1214$

