CS 390 Test II



July 25, 2000



1. Find an NFA without $\Lambda$ that accepts the same language as the following NFA-$\Lambda$: [26]


$q$ $\sigma$ $\delta(q, \sigma)$ $q$ $\sigma$ $\delta(q, \sigma)$
$q_{0}$ $a$ {$q_{1}$} $q_{1}$ $\Lambda$ {$q_{2}$}
$q_{0}$ $b$ {$q_{2}$} $q_{2}$ $\Lambda$ {$q_{0}$}


The initial state is $q_{0}$ and the accepting state is $q_{2}$.
The transitions not given in the table are to the empty set.



2. Find an FA that accepts the same language as the following NFA: [26]


$q$ $\sigma$ $\delta(q, \sigma)$ $q$ $\sigma$ $\delta(q, \sigma)$
$q_{0}$ $a$ {$q_{1}$, $q_{2}$} $q_{2}$ $a$ {$q_{3}$}
$q_{0}$ $b$ {$q_{3}$} $q_{2}$ $b$ {$q_{2}$}
$q_{1}$ $a$ $\emptyset$ $q_{3}$ $a$ $\emptyset$
$q_{1}$ $b$ {$q_{3}$} $q_{3}$ $b$ $\emptyset$


The initial state is $q_{0}$ and the accepting state is $q_{3}$.



3. Let $S$ and $T$ be sets of states of an NFA-$\Lambda$.
Prove that $\Lambda(S \cup T) \subseteq \Lambda (S) \cup \Lambda (T)$ by structural induction. [20]



4. For the FA given below answer the following questions:
(a) Find $R(1,3,3)$ using the recursive formula given by Kleene's Theorem. [10]
(b) Find the language accepted by this FA. You may answer this by inspection. [18]


$q$ $\sigma$ $\delta(q, \sigma)$ $q$ $\sigma$ $\delta(q, \sigma)$
$q_{0}$ $a$ {$q_{1}$} $q_{2}$ $a$ {$q_{3}$}
$q_{0}$ $b$ $\emptyset$ $q_{2}$ $b$ {$q_{0}$}
$q_{1}$ $a$ {$q_{2}$} $q_{3}$ $a$ {$q_{1}$}
$q_{1}$ $b$ $\emptyset$ $q_{3}$ $b$ $\emptyset$


The initial state is $q_{0}$ and the accepting state is $q_{3}$.