CS 390 Solutions to Test 1

October 5, 2004

1. Find a string of minimum length in \(\{0, 1\} \) that is NOT in the language corresponding to the regular expression \(1^*(0 + 10)^*1^* \).

 0110

2. Describe in English as simply as possible the language corresponding to each of the following regular expressions:

 (a) \((00 + 01 + 11)^+ \)
 The set of non-empty strings of even length which do not have 10 at odd positions.

 (b) \((00 + 01 + 10 + 11)^* \)
 The set of strings of even length.

3. Simplify the regular expression \((10 + 1 + 0^*1^*)^* \).
 \((0+1) \). Note that \(0^*1^* \) produces 0 which together with 1 generates all possible strings over the alphabet \(\{0, 1\} \) by *.

4. Find a regular expression for each of the following languages over the alphabet \(\{0, 1\} \):

 (a) The set of strings with an even number of 0’s.
 \((1 + 01^*0)^* \)

 (b) The language \(L \) defined recursively as follows:
 Basis Clause: \(\Lambda \in L \)
 Inductive Clause: If \(x \in L \) then \(01x, x0, x1 \in L \)
 Extremal Clause: Nothing is in \(L \) unless it is obtained from the above two clauses.
(0 + 1)*. Note that x0 and x1 generate all strings over the alphabet \{0, 1\}. Hence 01x is redundant.

5. Express the string ((ab)*(baa)*(bbab)*r over the alphabet \{a, b\} without using r, where wr denotes the reversal of w.

\[bbabbaa \]. Note that \((x^ry^rz)^r = (z^r)^r(y^r)^r(x^r)^r = zyx. \]

6. Prove that for a language \(L\), \((L^*)^* = L^*\).

We prove this in two steps. First we prove \(L^* \subseteq (L^*)^*\), then \((L^*)^* \subseteq L^*\).

(1) \(L^* \subseteq (L^*)^*\)

Since \((L^*)^* = (L^*)^0 \cup L^* \cup (L^*)^2 \cup \ldots\), \(L^* \subseteq (L^*)^*\).

(2) \((L^*)^* \subseteq L^*\)

Let \(w \in (L^*)^*\). Then there exist strings \(w_1, w_2, \ldots, w_k\) such that \(w_i \in L^*\) for \(i = 1, 2, \ldots, k\) and \(w = w_1w_2\ldots w_k\).

However, since \(w_i \in L^*\) for \(i = 1, 2, \ldots, k\), for each \(w_i\), there exist strings \(w_{ij} \in L\) such that \(w_i = w_{i1}w_{i2}\ldots w_{im_i}\).

Hence \(w = w_{11}w_{12}\ldots w_{1m_1}w_{21}w_{22}\ldots w_{2m_2}\ldots w_{km_k}\). Hence \(w \in L^*\).

\((L^*)^* \subseteq L^*\) can also be proven by structural induction on strings of \((L^*)^*\).

For that we need the fact that if \(x \in L^*\) and \(y \in L^*\), then \(xy \in L^*\).

Lemma: If \(x \in L^*\) and \(y \in L^*\), then \(xy \in L^*\).

Proof of Lemma by induction on \(y\):

Basis Step: If \(y = \Lambda\), then \(xy = x\Lambda = x\). Hence if \(x \in L^*\) then \(xy \in L^*\).

Inductive Step: Suppose that \(xy \in L^*\) for any \(y \in L^*\).

We will show that \(xyz \in L^*\) for any \(z \in L\).

Since \(xyz = (xy)z\) and \(xy \in L^*\), by the definition of \(L^*\) (see below), \((xy)z \in L^*\).

Recursive definition of \(L^*\)

Basis Clause: \(\Lambda \in L^*\).

Inductive Clause: For every \(x \in L^*\) and every \(y \in L\), \(xy \in L^*\).

Extremal Clause: Nothing is in \(L^*\) unless it is obtained from the above two clauses.

Proof by structural induction for \((L^*)^* \subseteq L^*\).

Basis Step: By the definition of \(L^*\) \(\Lambda \in L^*\).

Inductive Step: Suppose that for an arbitrary string \(x\), if \(x \in (L^*)^*\), then \(x \in L^*\).

Then for an arbitrary \(y \in L^*\), consider the child \(xy\) of \(x\) in \((L^*)^*\). We need to show that \(xy \in L^*\).

Since \(x \in L^*\) and \(y \in L^*\), by the lemma, \(xy \in L^*\).