May, 2004

1. Prove that the following languages are non-regular:
(a) $L_{1}=\left\{0^{n} 1^{m}: m\right.$ and $n$ are natural numbers and $\left.m>n\right\}$. [8]
(b) $L_{2}=\left\{a^{n} b^{m} c^{m}: m\right.$ and $n$ are natural numbers and $\left.n \geq 1\right\}$. [7]
2. Following the Kleene's theorem, construct an $N F A-\Lambda$ that accepts the language represented by the regular expression $(a b+a)^{*} b$. DO NOT SIMPLIFY. [15]
3. Using the basic Turing machines $T_{a}, T_{b}, T_{R}, T_{L}, T_{\Delta}, T_{L_{\Delta}}$ and $T_{R_{\Delta}}$, construct a Turing machine that accepts (but not decides) the language $L=\left\{a^{n} b^{m} c^{n}: m, n\right.$ are natural numbers and $\left.m \geq n\right\}$. [15]
4. Find an NFA that accepts the same language as the following NFA- $\Lambda$ :

| State $q$ | $a$ | $b$ | $\Lambda$ | State $q$ | $a$ | $b$ | $\Lambda$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | $\emptyset$ | $\emptyset$ | $\{2,9\}$ | 6 | $\emptyset$ | $\emptyset$ | $\{1\}$ |
| 2 | $\emptyset$ | $\emptyset$ | $\{3,7\}$ | 7 | $\{8\}$ | $\emptyset$ | $\emptyset$ |
| 3 | $\{4\}$ | $\emptyset$ | $\emptyset$ | 8 | $\emptyset$ | $\emptyset$ | $\{1\}$ |
| 4 | $\emptyset$ | $\emptyset$ | $\{5\}$ | 9 | $\emptyset$ | $\{10\}$ | $\emptyset$ |
| 5 | $\emptyset$ | $\{6\}$ | $\emptyset$ | 10 | $\emptyset$ | $\emptyset$ | $\emptyset$ |

The initial state is state 1 and the accepting state is state 10 .
5. Let $S$ and $T$ be sets of states of an $N F A-\Lambda$. Prove by structural induction (general induction) that if $S \subseteq T$, then $\Lambda(S) \subseteq \Lambda(T)$. [15]

6 Which of the following statements are true and which are false ? No proof is needed. [15]
(a) Every PDA (Pushdown Automaton) has two stacks.
(b) Every CFL (Context-Free Language) is accepted by some PDA.
(c) The following grammar is context-free:

$$
\begin{aligned}
& S \rightarrow a T b S \\
& S \rightarrow b T T \\
& T \rightarrow a \\
& T \rightarrow S
\end{aligned}
$$

(d) The following grammar is context-free but not regular:

$$
\begin{aligned}
& S \rightarrow a S \\
& S \rightarrow b S \\
& S \rightarrow \Lambda
\end{aligned}
$$

(e) The following grammar generates the set of trings that ends in a:

$$
\begin{aligned}
& S \rightarrow S S \\
& S \rightarrow b S \\
& S \rightarrow a
\end{aligned}
$$

(f) There are languages that are not accepted by any PDA.
(g) A regular language is not CFL.
(h) Every CFL is accepted by some Turing machine.
(i) There is exactly one non-terminal on the left hand side of any production of any context-free grammar.
(j) Any language accepted by some PDA is not regular.

