December, 2005

1. Define L^* for every languagte L as follows:

Basis Clause: $\Lambda \in L^*$.

Inductive Clause: For every x and y, if $x \in L$ and $y \in L^*$, then $xy \in L^*$. Extremal Clause: Nothign is in L^* unless it is obtained from the above clauses.

With the above definition, prove by Structural Induction that $(S^*)^* \subseteq S^*$. You may use any of the following results: [16]

(a) If $x \in L^*$ then $x \in L^+$. (b) If $x \in L^*$ and $y \in L^*$, then $xy \in L^*$. (c) If $x \in L^*$, then $x \in \bigcup_{i=0}^{\infty} L^i$. 2. Construct a Turing machine that accepts the language $\{ww^r \mid w \in \{a, b\}^*\}$ using basic Turing machines.

Do Not give detailed transitions table or diagram in terms of individual states. [16]

3. Accept_A asks whether or not a given Turing machine accepts the string A. Prove that Accept_A is unsolvable knowing that Halting Problem is unsolvable. [16]

4. Prove that the language of even length palindromes, i.e. $\{ww^r \mid w \in \{a,b\}^*\}$, is non-regular using Myhill-Nerode. [16]

5. Given the following grammar, answer the questions below:

$$S \to aT \mid bT \mid \Lambda$$
$$T \to aS \mid bS$$

(a) What is the language generated by this grammar ? [6]

(b) Parse the string *aababb* top-down. Use \Rightarrow to express your derivation. [5]

(c) Parse the string *aababb* bottom-up. Use \Rightarrow to express your derivation. [5]

6. Indicate which ones of the following statements are true and which ones are false. [20]

- (a) 00 is in the language $01^* + 10^* + 1^*0 + (0^*1)^*$.
- (b) $(111^*)^* = (11 + 111)^*$.
- (c) $(00^*11^*)^* = \Lambda + 0(0+1)^*1.$

(d) 0101 is one of the shortest strings that are not in $(0^*+1^*)(0^*+1^*)(0^*+1^*)$.

(e) Every string in $(0^* + 1^*)(0^* + 1^*)(0^* + 1^*)$ has at most one substring 01.

(f) The language of all strings not containing the substring 00 is $(01 + 1)^*0$.

(g) If $\delta(1, a) = \{1, 2, 3\}, \ \delta(1, b) = \{3\}, \ \delta(2, b) = \{4\}$ and $\delta(3, b) = \emptyset$ for an NFA, then $\delta(1, ab) = \{2, 3, 4\}.$

(h) $\{a^n \mid 1 \le n \le 100\}$ is not a regular language.

- (i) The union of infinitely many regular languages is regular.
- (j) In NFA, $\delta^*(q, a) = \delta(q, a)$ for any symbol a and any state q.