1. Define L^* for every language L as follows:

Basis Clause: $\Lambda \in L^*$.

Inductive Clause: For every x and y, if $x \in L$ and $y \in L^*$, then $xy \in L^*$.

Extremal Clause: Nothing is in L^* unless it is obtained from the above clauses.

With the above definition, prove by Structural Induction that $(S^*)^* \subseteq S^*$. You may use any of the following results: [16]

(a) If $x \in L^*$ then $x \in L^+$.
(b) If $x \in L^*$ and $y \in L^*$, then $xy \in L^*$.
(c) If $x \in L^*$, then $x \in \bigcup_{i=0}^{\infty} L^i$.

2. Construct a Turing machine that accepts the language \(\{ww^r | w \in \{a, b\}^*\} \) using basic Turing machines.
Do Not give detailed transitions table or diagram in terms of individual states. [16]
3. Accept_Λ asks whether or not a given Turing machine accepts the string Λ. Prove that Accept_Λ is unsolvable knowing that Halting Problem is unsolvable. [16]
4. Prove that the language of even length palindromes, i.e. \(\{ww^r \mid w \in \{a, b\}^*\} \), is non-regular using Myhill-Nerode. [16]
5. Given the following grammar, answer the questions below:

\[S \to aT \mid bT \mid \Lambda \\
T \to aS \mid bS \]

(a) What is the language generated by this grammar? [6]

(b) Parse the string \(aababb \) top-down. Use \(\Rightarrow \) to express your derivation. [5]

(c) Parse the string \(aababb \) bottom-up. Use \(\Rightarrow \) to express your derivation. [5]

6. Indicate which ones of the following statements are true and which ones are false. [20]

(a) \(00 \) is in the language \(01^* + 10^* + 1*0 + (0^*1)^* \).

(b) \((111^*)^* = (11 + 111)^* \).

(c) \((00^*11^*)^* = \Lambda + 0(0 + 1)^*1 \).

(d) \(0101 \) is one of the shortest strings that are not in \((0^* + 1^*)(0^* + 1^*)(0^* + 1^*) \).

(e) Every string in \((0^* + 1^*)(0^* + 1^*)(0^* + 1^*) \) has at most one substring \(01 \).

(f) The language of all strings not containing the substring \(00 \) is \((01 + 1)^*0 \).

(g) If \(\delta(1, a) = \{1, 2, 3\} \), \(\delta(1, b) = \{3\} \), \(\delta(2, b) = \{4\} \) and \(\delta(3, b) = \emptyset \) for an NFA, then \(\delta(1, ab) = \{2, 3, 4\} \).

(h) \(\{a^n \mid 1 \leq n \leq 100\} \) is not a regular language.

(i) The union of infinitely many regular languages is regular.

(j) In NFA, \(\delta^*(q, a) = \delta(q, a) \) for any symbol \(a \) and any state \(q \).