CS 390 Final Exam

December, 2005

1. Define L^{*} for every languagte L as follows:

Basis Clause: $\Lambda \in L^{*}$.
Inductive Clause: For every x and y, if $x \in L$ and $y \in L^{*}$, then $x y \in L^{*}$. Extremal Clause: Nothign is in L^{*} unless it is obtained from the above clauses.

With the above definition, prove by Structural Induction that $\left(S^{*}\right)^{*} \subseteq S^{*}$. You may use any of the following results: [16]
(a) If $x \in L^{*}$ then $x \in L^{+}$.
(b) If $x \in L^{*}$ and $y \in L^{*}$, then $x y \in L^{*}$.
(c) If $x \in L^{*}$, then $x \in \cup_{i=0}^{\infty} L^{i}$.
2. Construct a Turing machine that accepts the language $\left\{w w^{r} \mid w \in\{a, b\}^{*}\right\}$ using basic Turing machines.
Do Not give detailed transitions table or diagram in terms of individual states. [16]
3. Accept_ Λ asks whether or not a given Turing machine accepts the string Λ. Prove that Accept_ Λ is unsolvable knowing that Halting Problem is unsolvable. [16]
4. Prove that the language of even length palindromes, i.e. $\left\{w w^{r} \mid w \in\right.$ $\left.\{a, b\}^{*}\right\}$, is non-regular using Myhill-Nerode. [16]
5. Given the following grammar, answer the questions below:

$$
\begin{aligned}
& S \rightarrow a T|b T| \Lambda \\
& T \rightarrow a S \mid b S
\end{aligned}
$$

(a) What is the language generated by this grammar ? [6]
(b) Parse the string $a a b a b b$ top-down. Use \Rightarrow to express your derivation. [5]
(c) Parse the string $a a b a b b$ bottom-up. Use \Rightarrow to express your derivation. [5]
6. Indicate which ones of the following statements are true and which ones are false. [20]
(a) 00 is in the language $01^{*}+10^{*}+1^{*} 0+\left(0^{*} 1\right)^{*}$.
(b) $\left(111^{*}\right)^{*}=(11+111)^{*}$.
(c) $\left(00^{*} 11^{*}\right)^{*}=\Lambda+0(0+1)^{*} 1$.
(d) 0101 is one of the shortest strings that are not in $\left(0^{*}+1^{*}\right)\left(0^{*}+1^{*}\right)\left(0^{*}+1^{*}\right)$.
(e) Every string in $\left(0^{*}+1^{*}\right)\left(0^{*}+1^{*}\right)\left(0^{*}+1^{*}\right)$ has at most one substring 01.
(f) The language of all strings not containing the substring 00 is $(01+1)^{*} 0$.
(g) If $\delta(1, a)=\{1,2,3\}, \delta(1, b)=\{3\}, \delta(2, b)=\{4\}$ and $\delta(3, b)=\emptyset$ for an NFA, then $\delta(1, a b)=\{2,3,4\}$.
(h) $\left\{a^{n} \mid 1 \leq n \leq 100\right\}$ is not a regular language.
(i) The union of infinitely many regular languages is regular.
(j) In NFA, $\delta^{*}(q, a)=\delta(q, a)$ for any symbol a and any state q .

