CS 390 Solutions to Test 1

October 12, 2005

1. Which of the following statements are true and which are false ? [5 points each]
(a) $\left(L^{*}\right)^{+}=L^{*}$ for an arbitrary language L.
(b) $\left|L_{1} L_{2}\right|=\left|L_{1}\right|\left|L_{2}\right|$ for languages L_{1} and L_{2}.
(c) $\left(0^{*} 1+1^{*} 0^{*}+(10)^{*} 1\right)^{*}=\left(0^{*} 1^{*}\right)^{*}$
(d) The string 101010 is not in the language represented by $\left(1+01^{*} 0\right)^{*}$.
(e) Every string of L^{+}is can be expressed as the concatenation of some strings of L.
(f) $L L^{*}=L^{*} L$

All except (b) are true.
2. Prove by General (Structural) Induction that for arbitrary languages L_{1} and L_{2}, if $L_{1} \subseteq L_{2}$, then $L_{1}^{*} \subseteq L_{2}^{*}$ [20]

Basis Step: By the definition of Kleene star, $\Lambda \in L_{2}^{*}$.
Induction Hypothesis: $x \in L_{1}^{*}$ and $x \in L_{2}^{*}$.
Inductive Step: We need to show that for an arbitrary element 'a' of L_{1}, $x a \in L_{2}^{*}$.
Since $L_{1} \subseteq L_{2}$ and $a \in L_{1}, a \in L_{2}$.
Since $x \in L_{2}^{*}$, by the definition of $L_{2}^{*}, x a \in L_{2}^{*}$.

3 (a) Find a string of minimum length in $\{0,1\}$ that is NOT in the language corresponding to the regular expression $\left(1^{*}+01^{*} 0\right)^{*} 01^{*}$. [4]
Λ
(b) Find a string of minimum length in $\{0,1\}$ that is IN the language corresponding to the regular expression of (a). [4]

0
4. Define the language RECURSIVELY which is represented by each of the following regular expressions:
(a) $1^{*} 0$
[7]
Basis Clause: $0 \in L ; \mathrm{BR}_{i}$ Inductive Clause: If $x \in L$ then $1 x \in L$. $\mathrm{BR}_{\text {; }}$ Extremal Clause: Nothing is in L unless it is obtained from the above two clauses.
(b) $(1+010)^{*} 01^{*} \quad[7]$

Basis Clause: $0 \in L$.
Inductive Clause: If $x \in L$ then $1 x, x 1,010 x \in L$.
Extremal Clause: Nothing is in L unless it is obtained from the above two clauses.
5. Simplify the following regular expressions:
(a) $\left(01^{*} 0+1^{*} 0+1^{*}\right)^{*}$
$(0+1)^{*}$
(b) $0\left(0^{*} 0+0^{*}\right)+0^{*}$

0*
6. Find a regular expression for each of the following languages over the alphabet $\{0,1\}$:
(a) The set of strings with an even number of 0's. [7]
$\left(1+01^{*} 0\right)^{*}$
(b) The language L defined recursively as follows: [7]

Basis Clause: $0 \in L$
Inductive Clause: If $x \in L$ then $1 x, 010 x, x 1 \in L$
Extremal Clause: Nothing is in L unless it is obtained from the above two clauses.
$(1+010)^{*} 01^{*}$

