October 12, 2005

1. Which of the following statements are true and which are false? [5 points each]

(a) (L*)⁺ = L* for an arbitrary language L.
(b) | L₁L₂ |=| L₁ || L₂ | for languages L₁ and L₂.
(c) (0*1 + 1*0* + (10)*1)* = (0*1*)*
(d) The string 101010 is not in the language represented by (1 + 01*0)*.
(e) Every string of L⁺ is can be expressed as the concatenation of some strings of L.
(f) L L* L*L

(f) $LL^* = L^*L$

All except (b) are true.

2. Prove by General (Structural) Induction that for arbitrary languages L_1 and L_2 , if $L_1 \subseteq L_2$, then $L_1^* \subseteq L_2^*$ [20]

Basis Step: By the definition of Kleene star, $\Lambda \in L_2^*$. Induction Hypothesis: $x \in L_1^*$ and $x \in L_2^*$. Inductive Step: We need to show that for an arbitrary element 'a' of L_1 , $xa \in L_2^*$. Since $L_1 \subseteq L_2$ and $a \in L_1$, $a \in L_2$. Since $x \in L_2^*$, by the definition of L_2^* , $xa \in L_2^*$. 3 (a) Find a string of minimum length in $\{0, 1\}$ that is **NOT** in the language corresponding to the regular expression $(1^* + 01^*0)^*01^*$. [4]

Λ

(b) Find a string of minimum length in $\{0, 1\}$ that is **IN** the language corresponding to the regular expression of (a). [4]

0

4. Define the language **RECURSIVELY** which is represented by each of the following regular expressions:

(a)
$$1^*0$$
 [7]

Basis Clause: $0 \in L$;BR; Inductive Clause: If $x \in L$ then $1x \in L$. ;BR; Extremal Clause: Nothing is in L unless it is obtained from the above two clauses.

(b) (1+010)*01* [7]

Basis Clause: $0 \in L$.

Inductive Clause: If $x \in L$ then $1x, x1, 010x \in L$.

Extremal Clause: Nothing is in L unless it is obtained from the above two clauses.

5. Simplify the following regular expressions:

(a)
$$(01^*0 + 1^*0 + 1^*)^*$$
 [7]
(0 + 1)*
(b) $0(0^*0 + 0^*) + 0^*$ [7]
0*

6. Find a regular expression for each of the following languages over the alphabet $\{0, 1\}$:

(a) The set of strings with an even number of 0's. [7]

 $(1+01^*0)^*$

(b) The language L defined recursively as follows: [7]

Basis Clause: $0 \in L$ Inductive Clause: If $x \in L$ then $1x, 010x, x1 \in L$ Extremal Clause: Nothing is in L unless it is obtained from the above two clauses.

 $(1+010)^*01^*$