1. Which ones of the following statements are true and which ones are false? [16]
 (a) If \(L_1 \subseteq L_2 \) and \(L_1 \) is not regular, then \(L_2 \) is not regular.
 (b) If \(L_1 \) and \(L_2 \) are nonregular, then \(L_1 \cup L_2 \) is nonregular.
 (c) \((L^+)^* = L^* \).
 (d) \(S \subseteq \Lambda(S) \).
 (e) \(S \rightarrow aSa \mid bSb \mid \Lambda \) generates all palindromes over \(\{a, b\} \).
 (f) \((a + b)^*ab(a + b)^* + b^*a^* = (a + b)^* \).
 (g) \(aaa \) is in the language represented by \(ab^* + ba^* + b^*a + (a^*b)^* \).
 (h) \(\{a^n b^n \mid n \in N \} \) is accepted by a PDA.
 (i) The set of all odd-length strings in \(\{a, b\}^* \) with middle symbol 'a' is generated by a context-free grammar.
 (j) Every (Turing-)acceptable language is (Turing-)decidable.

2. Prove by general induction that \(Rev(Rev(x)) = x \) for an arbitrary string \(x \) in \(\{a, b\}^* \). \(Rev(x) \) is defined as follows: [16]

 Basis Clause: \(Rev(\Lambda) = \Lambda \)
 Inductive Clause: For any string \(x \in \{a, b\}^* \) and any symbol \(c \) in \(\{a, b\} \), \(Rev(xc) = cRev(x) \).
3. Prove that $L = \{0^i1^j \mid j \text{ is a multiple of } i\}$ is nonregular by Myhill-Nerode.

4. Find an example of a nonregular language $L \subseteq \{a, b\}^*$ so that L^* is regular.

5. Decide whether or not the following statement is true and give your reason:

If L_1 is regular, L_2 is nonregular and $L_1 \cap L_2$ is regular, then $L_1 \cup L_2$ is nonregular.
6. Using the basic Turing machines $T_a, T_b, T_R, T_L, T_{\Delta}, T_{L_{\Delta}}, T_{R_{\Delta}}$ etc., construct a Turing machine that copies a given string over the alphabet $\{a, b\}$ i.e. a Turing machine that goes from $(q_0, \Delta w)$ to $(h, \Delta w \Delta w)$. [20]