CS 390 Final Exam

April, 2005

1. Which ones of the following statements are ture and which ones are false ? [16]
(a) If $L_{1} \subseteq L_{2}$ and L_{1} is not regular, then L_{2} is not regular.
(b) If L_{1} and L_{2} are nonregular, then $L_{1} \cup L_{2}$ is nonregular.
(c) $\left(L^{+}\right)^{*}=L^{*}$.
(d) $S \subseteq \Lambda(S)$.
(e) $S \rightarrow a S a|b S b| \Lambda$ generates all palindromes over $\{a, b\}$
(f) $(a+b)^{*} a b(a+b)^{*}+b^{*} a^{*}=(a+b)^{*}$
(g) $a a a$ is in the language represented by $a b^{*}+b a^{*}+b^{*} a+\left(a^{*} b\right)^{*}$.
(h) $\left\{a^{n} b^{n} \mid n \in N\right\}$ is accepted by a PDA.
(i) The set of all odd-length strings in $\{a, b\}^{*}$ with middle symbol 'a' is generated by a context-free grammar.
(j) Every (Turing-)acceptable language is (Turing-)decidable.
2. Prove by general induction that $\operatorname{Rev}(\operatorname{Rev}(x))=x$ for an arbitrary string x in $\{a, b\}^{*} . \operatorname{Rev}(x)$ is defined as follows: [16]

Basis Clause: $\operatorname{Rev}(\Lambda)=\Lambda$
Inductive Clause: For any string $x \in\{a, b\}^{*}$ and any symbol c in $\{a, b\}$, $\operatorname{Rev}(x c)=c \operatorname{Rev}(x)$.
3. Prove that $L=\left\{0^{i} 1^{j} \mid j\right.$ is a multiple of i$\}$ is nonregular by Myhill-Nerode. [16]
4. Find an examle of a nonregular language $L \subseteq\{a, b\}^{*}$ so that L^{*} is regular. [16]
5. Decide whether or not the following statement is true and give your reason: [16]

If L_{1} is regular, L_{2} is nonregular and $L_{1} \cap L_{2}$ is regular, then $L_{1} \cup L_{2}$ is nonregular.
6. Using the basic Turing machines $T_{a}, T_{b}, T_{R}, T_{L}, T_{\Delta}, T_{L_{\Delta}}, T_{R_{\Delta}}$ etc., construct a Turing machine that copies a given string over the alphabet $\{a, b\}$ i.e. a Turing machine that goes from $\left(q_{0}, \underline{\Delta} w\right)$ to $(h, \underline{\Delta} w \Delta w)$. [20]

