CS 390 Test

March 2005

1. Describe as simply as possible the language represented by each of the following regular expressions:
(a) $\left((a+b)^{3}\right)^{*}(\Lambda+a+b)$

The language of strings of a's and b's of length a multiple of 3 or a multiple of 3 plus 1 .
(b) $(a a+a a a)^{*}$

The language of all strings of a's except a.
2. Simplify each of the following regular expressions:
(a) $\left(a(a+b)^{*}\right)^{+}$
$a(a+b)^{*}$
(b) $\left(a\left(a^{*}+b^{*}\right)+a^{*} b^{*}\right)^{*}$
$(a+b)^{*}$
3. For the language of strings over the alphabet $\{a, b\}$ which have no substring $a b$ answer the following questions:
(a) Give a regular expression corresponding to the language.
$b^{*} a^{*}$
(b) Define the language recursively.

Let L denote the language.
Basis Clause: $\Lambda \in L$.
Inductive Clause: If $x \in L$, then $b x \in L$ and $x a \in L$.
Extremal Clause: Nothing is in L unless it is obtained from the Basis and Inductive Clauses.
4. Find the language accepted by the following NFA:
$a b(b a b+a b b)^{*}$
5. Prove that $\Lambda(\Lambda(S))=\Lambda(S)$ for a set of states S of an NFA- Λ, where $\Lambda(S)$ denotes the Λ-closure of S.

We prove this by proving the following two statements: (1) $\Lambda(S) \subseteq \Lambda(\Lambda(S))$
(2) $\Lambda(\Lambda(S)) \subseteq \Lambda(S)$.
(1) $\Lambda(S) \subseteq \Lambda(\Lambda(S))$: This is true by the definition of Λ-closure.
(2) $\Lambda(\Lambda(S)) \subseteq \Lambda(S)$: This is proven by general induction.

Basis Step: The basis (the set of seeds) of $\Lambda(\Lambda(S))$ is $\Lambda(S)$, which is certainly a subset of $\Lambda(S)$.
Inductive Step:
Induction Hypothesis: For an arbitrary $x \in \Lambda(\Lambda(S)), x \in \Lambda(S)$ holds.
We are going to show that all the children of x are in $\Lambda(S)$.
The children of x are in $\delta(x, \Lambda)$. But since $x \in \Lambda(S)$ holds, by the definition of Λ-closure, $\delta(x, \Lambda) \subseteq \Lambda(S)$.
Thus we have proven that the property of being in $\Lambda(S)$ is inherited from one generation to the next generation.
Hence $\Lambda(\Lambda(S)) \subseteq \Lambda(S)$.
Hence from (1) and (2), $\Lambda(\Lambda(S))=\Lambda(S)$ holds.
6. Find an NFA equivalent to the following NFA- Λ.

State q	a	b	State q	a	b
1	$\{3,4,5,6\}$	$\{5\}$	4	$\{4,5,6\}$	$\{5\}$
2	$\{3\}$		5	$\{6\}$	$\{5\}$
3	\emptyset	$\{2\}$	6		

The accepting states are 1,2 and 6

