1. Let \(L \) be an arbitrary language over the alphabet \(\{a, b\} \).
Prove that if \(x \) and \(y \) are strings of \(L^* \), then \(xy \) is also a string of \(L^* \) by
general induction on \(y \) fixing \(x \). Assume that \(L^* \) is defined as follows:

Definition of \(L^* \):
Basis Clause: \(\Lambda \) belongs to \(L^* \).
Inductive Clause: If \(w \) is a string of \(L^* \) and \(x \) is a string of \(L \), then \(wx \) is a
string of \(L^* \).
Extremal Clause: Nothing is in \(L^* \) unless it is obtained by using the above
two clauses. [15 Points]

Proof:
Basis Step: Let \(y = \Lambda \). Then \(xy = x\Lambda = x \in L^* \).
Hence the statement holds for \(y = \Lambda \).
Inductive Step: We assume that \(xy \in L^* \) for \(x, y \in L^* \) and prove that for
any string \(w \) of \(L \), \(x(yw) \in L^* \).
\[x(yw) = (xy)w. \]
Then since \(xy \in L^* \) and \(w \in L \), by the definition of \(L^* \),
\((xy)w \in L^* \).
Hence \(x(yw) \in L^* \).

2. Answer the following questions for the regular expression \(a^*b^*a^* + b^*a^*b^* + a^*b^* \): [4 Points Each]

(a) Find a shortest string that is not in the language corresponding to the
given regular expression (the language hereafter).
Answer: abab or baba
(b) Find a shortest string in the language other than \(\Lambda \).
Answer: a or b
(c) Describe the language as simply as possible in English.
Answer: The set of strings of a’s and/or b’s which have at most one sub-
string ab and at most one substring ba.
(d) Simplify the given regular expression.
Answer: \(a^*b^*a^* + b^*a^*b^* \)
(e) Find a regular expression of the reversal of the language.
Answer: \(a^*b^*a^* + b^*a^*b^* \)
3. Find a regular expression for the language accepted by the following NFA:[15 Points]

Answer: \(a(a + bab + bba)*ba + (a(a + bab)*bb)\)

4. Find a regular expression for the language defined recursively as

Basis Clause: \(\Lambda\), 01 and 10 belong to \(L\).
Inductive Clause: If \(x\) is a string of \(L\), then \(x01\), \(x10\) and \(11x\) are also strings of \(L\).
Extremal Clause: Nothing is in \(L\) unless it is obtained by using the above two clauses. [15 Points]

Answer: \((11)*(\Lambda + 01 + 10)(01 + 10)\) = \((11)*(01 + 10)\)

5. Find the NFA-\(\Lambda\) for the regular expression \((ab)^* + a(ba)^*\) faithfully following the procedure given in the textbook/web notes. Do not simplify.[15 Points]

Answer: Omitted

6. Answer the questions below for the following NFA-\(\Lambda\):

(a) Find \(\Lambda\{3\}\) and \(\Lambda\{1, 3\}\) [5 Points]

Answer: \(\{1, 2, 3\}\) for both.

(b) Find \(\delta*(2, ba)\). [5 Points]

Answer: \(\{1, 2, 4\}\)

(c) Find the NFA that accepts the same language as the given NFA-\(\Lambda\). [10 Points]

Answer:

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>{1, 2, 4}</td>
<td>{1, 2, 3, 4}</td>
</tr>
<tr>
<td>2</td>
<td>{4}</td>
<td>{1, 2, 3}</td>
</tr>
<tr>
<td>3</td>
<td>{1, 2, 4}</td>
<td>{1, 2, 3, 4}</td>
</tr>
<tr>
<td>4</td>
<td>{1, 2, 3}</td>
<td>\emptyset</td>
</tr>
</tbody>
</table>