CS 390 Final Exam

May 2010

1. Let $\mathrm{L}=\left\{0^{i} 1^{j}: j=i\right.$ or $j=3 i$, where i and j are natural numbers $\}$. Prove by Myhill-Nerode that L is non-regular. [15]
2. Let S be the language over alphabet $\{a, b\}$ defined recursively as follows:

Basis Clause: $\Lambda \in S$
Inductive Clause: For all x, if $x \in S$, then $a x, a x b \in S$
Exrremal Clause: Nothing is in S unlesss it is obtained by the above two clauses.

Show by General Induction that $S \subseteq\left\{a^{i} b^{j}: i \geq j\right.$, and i, j are natural numbers $\}$. [15]
3. Consider the following grammar:
$S \rightarrow T T$
$T \rightarrow a T|T a| b$
(a) What kind of grammar is it ? [2]
(b) What is the shortest string in the language generated by the grammar ? [3]
(c) What kind of strings does the grammar generate ? [5]

4 (a) Give a design/plan of a Turing machine that divides a given natural number by 2 and leaves the remainder in the second square from the left end of the tape. [5]

4 (b) Give the diagram of your Turing machine of (a) above. You may use basic Turing machines such as $T_{a}, T_{R}, T_{R_{\Delta}}$, etc. [10]
5. Construct the $N F A-\Lambda$ for the regular expression $a^{*} b+(b a+b)^{*}$ using Kleene Theorem 1. Do not simplify your $N F A-\Lambda$. [15]
6. Consider the following two problems, Accepts and Accepts Λ :

Accepts: Given a string x and a Turing machine T, this problem asks whether or not T accepts x.

Accepts Λ : Given a Turing machine T, this problem asks whether or not T accepts Λ.

The following questions are concerned with the unsolvability of those problems.
Let x be a string and T be a Turing machine.
(a) A Turing machine T_{1} can be constructed by concatenating T_{x} with T (first T_{x} then T), where T_{x} is a Turing machine that writes x and halts given Λ as an input.
Draw a diagram of T_{1} as in 4 (b). [3]
(b) Suppose that T_{1} accepts Λ. Does T accept x ? Give your reasons. [6]
(c) Suppose that Accepts is unsolvable. Can we conclude that Accept Λ is unsolvable? Give your reasons. [6]
7. For each of the following statements answer whether or not it is true. [15]
(a) Union of two context-free languages is context-free.
(b) $\left\{a^{n} b^{n}: 0 \leq n \leq 10^{5}\right.$, n is an integer $\}$ is regular.
(c) Unin of infinitely many regular languages is regular.
(d) For any arbitrary language $L, \Lambda \in L^{+}$.
(e) If L_{1} and L_{2} are non-regular, then $L_{1} \cap L_{2}$ is non-regular.
(f) If L_{1} is regular and L_{2} is non-regular, then $L_{1} \cup L_{2}$ is non-regular.
(g) $\left(111^{*}\right)^{*}=(11+111)^{*}$.
(h) For a DFA $\delta^{*}(q, x y)=\delta^{*}\left(\delta^{*}(q, y), x\right)$.
(i) $\Lambda(S \cap T)=\Lambda(S) \cap \Lambda(T)$ for sets of states S and T of an NFA- Λ.
(j) If the set of 'yes'-instances of a decision problem is accepted by some Turing machine, then that decision problem is solvable.
(k) If one Turing machine accepts the 'yes'-instances of a decision problem and another (different) Turing machine accepts the 'no'-instances of that decision problem, then that decision problem is solvable.
(l) The set of non-palindromes is non-regular.
(m) $\left\{a^{i} b^{j} c^{k}: i=j+k, i, j, k\right.$ are natural numbers $\}$ is context-free.
(n) $\left(L_{1} \cup L_{2}\right)^{*}=L_{1}^{*} \cup L_{2}^{*}$.
(o) Let L_{1} and L_{2} be context-free languages generated by context-free grammars G_{1} and G_{2}, respectively. Let S_{1} be the start symbol of G_{1} and S_{2} be the start symbol of G_{2}, respectively. Also assume that G_{1} and G_{2} don't have any non-terminals in common. Then $S \rightarrow S_{1} S_{2}$ together with the productions of G_{1} and G_{2} generates $L_{1} L_{2}$ and it is context-free.

