CS 390 Final Exam

May 2010

1. Let $L = \{ 0^i 1^j : j = i \text{ or } j = 3i, \text{ where i and j are natural numbers} \}$. Prove by Myhill-Nerode that L is non-regular. [15] 2. Let S be the language over alphabet $\{a, b\}$ defined recursively as follows:

Basis Clause: $\Lambda \in S$

Inductive Clause: For all x, if $x \in S$, then $ax, axb \in S$

Exrremal Clause: Nothing is in S unlesss it is obtained by the above two clauses.

Show by General Induction that $S \subseteq \{a^i b^j : i \geq j, \text{ and } i, j \text{ are natural numbers}\}$. [15]

- 3. Consider the following grammar:
- $\begin{array}{l} S \rightarrow TT \\ T \rightarrow aT \mid Ta \mid b \end{array}$
- (a) What kind of grammar is it ? [2]

(b) What is the shortest string in the language generated by the grammar ?[3]

(c) What kind of strings does the grammar generate? [5]

4 (a) Give a design/plan of a Turing machine that divides a given natural number by 2 and leaves the remainder in the second square from the left end of the tape. [5]

4 (b) Give the diagram of your Turing machine of (a) above. You may use basic Turing machines such as T_a, T_R, T_{R_Δ} , etc. [10]

5. Construct the $NFA - \Lambda$ for the regular expression $a^*b + (ba+b)^*$ using Kleene Theorem 1. Do not simplify your $NFA - \Lambda$. [15]

6. Consider the following two problems, Accepts and Accepts Λ :

Accepts: Given a string x and a Turing machine T, this problem asks whether or not T accepts x.

Accepts Λ : Given a Turing machine T, this problem asks whether or not T accepts Λ .

The following questions are concerned with the unsolvability of those problems.

Let x be a string and T be a Turing machine.

(a) A Turing machine T_1 can be constructed by concatenating T_x with T (first T_x then T), where T_x is a Turing machine that writes x and halts given Λ as an input.

Draw a diagram of T_1 as in 4 (b). [3]

(b) Suppose that T_1 accepts Λ . Does T accept x? Give your reasons. [6]

(c) Suppose that Accepts is unsolvable. Can we conclude that Accept Λ is unsolvable? Give your reasons. [6]

- 7. For each of the following statements answer whether or not it is true. [15]
- (a) Union of two context-free languages is context-free.
- (b) $\{a^n b^n : 0 \le n \le 10^5, n \text{ is an integer }\}$ is regular.
- (c) Unin of infinitely many regular languages is regular.
- (d) For any arbitrary language $L, \Lambda \in L^+$.
- (e) If L_1 and L_2 are non-regular, then $L_1 \cap L_2$ is non-regular.
- (f) If L_1 is regular and L_2 is non-regular, then $L_1 \cup L_2$ is non-regular.
- (g) $(111^*)^* = (11 + 111)^*$.
- (h) For a DFA $\delta^*(q, xy) = \delta^*(\delta^*(q, y), x)$.
- (i) $\Lambda(S \cap T) = \Lambda(S) \cap \Lambda(T)$ for sets of states S and T of an NFA- Λ .
- (j) If the set of 'yes'-instances of a decision problem is accepted by some Turing machine, then that decision problem is solvable.

(k) If one Turing machine accepts the 'yes'-instances of a decision problem and another (different) Turing machine accepts the 'no'-instances of that decision problem, then that decision problem is solvable.

(l) The set of non-palindromes is non-regular.

(m) $\{a^i b^j c^k : i = j + k, i, j, k \text{ are natural numbers}\}\$ is context-free.

(n) $(L_1 \cup L_2)^* = L_1^* \cup L_2^*$.

(o) Let L_1 and L_2 be context-free languages generated by context-free grammars G_1 and G_2 , respectively. Let S_1 be the start symbol of G_1 and S_2 be the start symbol of G_2 , respectively. Also assume that G_1 and G_2 don't have any non-terminals in common. Then $S \to S_1S_2$ together with the productions of G_1 and G_2 generates L_1L_2 and it is context-free.