CS 390Test

March 2013

1(a) Recursively define the language represented by the regular expression $a^{*} b^{*}$. [5] Let L be the langrage represented by $a^{*} a^{*}$.
Breip (linus: $I \in L$
Indnatie (lunar : if $x \in L$, then $a x \in L$ and $x b \in L$
Extrenul Clave l: renal clause
(b) List all the strings of length 3 or less of the language of (a). [5]
$1, a, b, a a, a k, t b, a 9 a, a 9 b, a t b, b b k$
(c) Describe the strings of the language of (a) in English. [5]

Any member of a's followed by amy umber of it's
2. Find a regular expression for each of the languages given below:
(a) The language of strings consisting of exactly two $a^{\prime} s$ and any number of $b^{\prime} s$ over $\{a, b\}$. [6]

$$
R^{*} a R^{*} a b^{*} \text { or anything Equirlent }
$$

(b) The language of strings consisting of odd number of $a^{\prime} s$ and any number of $b^{\prime} s$ over $\{a, b\}$. [6]

$$
\left(f+a b^{*} a\right)^{*} a b^{*} \text { or } b^{*} a\left(f+a b^{*} a\right)^{*}
$$

or anything equirabut.
3. Find an NFA without Λ-transitions that accepts the language reprosented by the regular expression
$\left(a+b a^{*} b\right)^{*}$. [8]

others are possible
4. For the following NFA answer the questions below:

q	a	b
1	$\{2,3\}$	$\{3\}$
2	$\{4\}$	$\{4\}$
3	$\{1,4\}$	$\{2\}$
4	\emptyset	$\{4\}$

Here the initial state is 1 and the accepting state is 4 .
(a) Find $\delta^{*}(1, a)$. [5]

$$
\{2,3\}
$$

(b) Find $\delta^{*}(1, a b)$. [5]

$$
\{2,4\}
$$

(c) List all the shortest strings that are accepted by the NFA. [5]
$a a, a b, f a$
(d) Convert the NFA to a DFA that accepts the same language. [10]

5. For a DFA $\left(Q, \Sigma, \delta, q_{0}, A\right)$, let $h(q, k)$ denote the set of states which can be reached from state q by reading a string of length k. Assuming that $\Sigma=\{a, b\}$, answer the following questions:
(a) Find $h(q, 0)$. [5]

$$
\{q\}
$$

(b) Find $h(q, 1)$. [5]

$$
\{\delta(q, a), \delta(q, b)\}
$$

(c) Recursively define $h(q, k)$. [5]

Basis (lane: $h(q, 0)=\{q\}$
Inducthe (lave:

$$
h(q, k+1)=\bigcup_{p \in h(q, k)}\{\delta(p, a)\} \cup\{\in \hbar(j, k)\}
$$

Extreme Clarke: Nit recasary because k is a a tine number.
6. Concerning proving $L^{+} \subseteq L^{*}$ by general induction, answer the following questions:
(a) Briefly explain what needs to be done in general in a proof by general induction. [3]
(1) Prove the claim for the members of to basis.
(2) Gowning thad the dam hold tone for an arbithay member of the est, prove that it holdetime for the children of tho number.
(b) What is the basis of L^{+}? [2]
L
(c) What do you need to do in the basis step of a proof by general induclion of $L^{+} \subseteq L^{*}$? [3]

Prove that $L \subseteq L^{*}$
(d) Complete the basis step of the proof. [7]

Since $\Lambda \in L^{*}$, for arijelement $x \in L$,

$$
A X \in L^{*} \text { by the (recursive) definition of } L^{*} \text {, }
$$

(e) What do you need to do in the inductive step of a proof by general induction of $L^{+} \subseteq L^{*}$? [3]

Assume that for an arbitrary element $x \in L T, x \in L^{*}$ and prove that $x y \in L^{*}$ fir trey $y \in L$.
(f) Complete the inductive step of the proof. [7]

Gesunic the for an anfithary element $x \in L^{+}, x \in L^{*}$. Then ly the (recursive) definition of \angle * if $x \in L^{*}$ then for wry element $y \in L$, $x y \in L^{*}$. That is, the chithen $x y$ of x are in L ?

