CS 390 Solutions to Test I


1. T, T, T, T, F

2. tex2html_wrap_inline20

3 (a) a
(b) aa, ab
(c) aaa, aab, abb.
(d) By prefixing with a or by appendin b.
(e) By prefixing with a or by appendin b.
(f) (1) Basis: tex2html_wrap_inline42
(2) Induction: For any tex2html_wrap_inline44 , tex2html_wrap_inline46 and tex2html_wrap_inline48 .
Extremal Clause: Nothing is in L unless it is obtained from (1) and (2).

4. Induction on the length of string.
Statement to prove: For any natural number n and any string x over alphabet tex2html_wrap_inline56 , if tex2html_wrap_inline58 , then { tex2html_wrap_inline60 is regular.

Proof. Basis: n = 0. If tex2html_wrap_inline64 , then tex2html_wrap_inline66 . By the definition of regular language, { tex2html_wrap_inline68 } is regular.
Induction: Suppose that for a natural number n and a string x, if tex2html_wrap_inline58 , then {x} is regular.
If tex2html_wrap_inline78 , then there is tex2html_wrap_inline80 and tex2html_wrap_inline82 such that x = ya. Hence {x} = {ya} = tex2html_wrap_inline90 . But since tex2html_wrap_inline92 , tex2html_wrap_inline94 is regular. Also { tex2html_wrap_inline96 is regular by the definition of regular language. Since a concatenation of regular languages is regular, tex2html_wrap_inline98 is regular.


S. Toida
Tue Jan 14 11:43:10 EST 1997

Back to 1996 Test 1 Questions

Back to CS390 1996 Test 1

Back to CS390 Past Tests