Set
(P
Q)
----- addition
Q)
P ----- simplification
(P
Q]
Q ----- modus ponens
Q)
Q]
P ----- modus tollens
P
(P
Q]
Q ----- disjunctive syllogism
Q)
(Q
R)]
(P
R)
----- hypothetical syllogism
Q)
[(Q
R)
(P
R)]
Q)
(R
S)]
[(P
R)
(Q
S)]
Q)
(Q
R)]
(P
R)
(P
P)
----- idempotence of
(P
P)
----- idempotence of
Q)
(Q
P)
----- commutativity of
Q)
(Q
P)
----- commutativity of
Q)
R]
[P
(Q
R)]
----- associativity of 
Q)
R]
[P
(Q
R)]
----- associativity of 
(P
Q)
(
P
Q)
----- DeMorgan's Law
(P
Q)
(
P
Q)
----- DeMorgan's Law
(Q
R]
[(P
Q)
(P
R)]
----- distributivity of
over
(Q
R]
[(P
Q)
(P
R)]
----- distributivity of
over
True)
True
False)
False
False)
P
True)
P
P)
True
P)
False
(
P) ----- double negation
Q)
(
P
Q)
----- implication
Q)
[(P
Q)
(Q
P)]----- equivalence
Q)
R]
[P
(Q
R)]
----- exportation
Q)
(P
Q)]
P
----- absurdity
Q)
(
Q
P)
----- contrapositivewhere c is some arbitrary element of the universe.
where P(c) holds for every element c of the universe of discourse.
where c is some element of the universe of discourse. It is not arbitrary but must be one for which P(c ) is true.
where c is an element of the universe.
P(x)
x [ P(x)
Q(x) ]
[
x P(x)
x Q(x) ]
x P(x)
x Q(x) ]
x [ P(x)
Q(x) ]
x [ P(x)
Q(x) ]
[
x P(x)
x Q(x) ]
x [ P(x)
Q(x) ]
[
x P(x)
x Q(x) ]