Team Document-Viewing Tool on Remote Machines

Windows NT Systems Programming Project

Chandra Potluri                                                                              Srihari Dammalapati

Description of Project:

The Main objective of this project is to build a collaborative team document-viewing system. We have built a server controlled team document-viewing system which allows a group of users to surf through the text document together.  A Team can be a group of users who are working on a common goal. They may be members of a project or members of company etc. The main intention of this project is to show a particular piece of information to team members who are working in different locations.

In this environment a team member will start the server and this server starts client processes on remote machines. Users on client machines will have a choice to accept or reject the connection. User will load the document in server window which will in turn loads the document in all client windows. Users on server side or client side cannot modify the document. User on client side has no control on document view. Client process shows whatever server displays. It is just a mirror view of server. User on the client machine can kill the process at any time if he wants to. This system works only on WindowsNT and only for text files.

Significant problems:
1. Our first problem was how to display remote windows. We were motivated by UNIX X-architecture. In this architecture a single process can display windows on different machines. All these windows will be in the control of the host process. Users on other machines have to give authorization to display these windows. But WindowsNT doesn’t have X-like architecture. How do we solve this problem?

2. In order to overcome the first problem, we thought of  having  a different client process for each client window. How should the server initiate a client process?

3. After starting remote process how to synchronize between server and clients? Which technologies have to be used for effective synchronization?

4. How should the client and the server windows look?

Technical Approach:

1. Our main problem was how to display all the windows and coordinate them without using  WindowsNT which does not have an X-like architecture.  Our solution for this problem is as follows:-

A user who wants to show a document to his team members will start a server process and loads his document into server window. Server in turn starts all the client processes on remote machines. A client can accept or reject a connection with the server. Once the connection is accepted, except for closing the window and resizing, everything else is controlled by the server like opening a new document, scrolling the document and selection of text in the document. These messages will be sent to client processes. The server maintains the list of clients currently connected.

2. [image: image1.wmf]Out first solution led to second problem. How do we start a client process on a remote machine? If we had any command like “rsh” in UNIX, we can solve this problem easily. The only way we found that such a thing could be done in WindowNT is by using the service control manager. But we failed in this direction because creating a new service requires administrator rights. We implemented our next plan. To see detailed explanation of our plans visit http://www.cs.odu.edu/~potluri/winnt/week2.html.  In our second plan we wanted to run a daemon process on all client machines. When any team member want to show a document he will start the server and send  client process startup packets to the daemons running on the client machines.  

[image: image2.wmf][image: image3.wmf][image: image4.wmf][image: image5.wmf][image: image6.wmf][image: image7.wmf]
Figure 1. Server Architecture.

· [image: image8.wmf][image: image9.wmf][image: image10.bmp]
Server contacts client machine daemon process using UDP packets. Server will send a datagram which consists of  a name(full path or short name) which is an indication of the process to startup along with the server IP address, port number, user name as arguments.


  




Figure 2:  Server connection with clients

· Daemon process will start the client process using the name that is sent by server. Server machine name, port number and user name are passed to the client process as arguments. Client process now connects to the server at the specified machine and port.

                                                   

Figure 3: System Architecture.

             For an explanation of how we use the registry to startup client processes, please refer to the Appendix.

       How do we maintain synchronization? Which tools should be used to view the document? We tried to use Internet Explorer on our client and server side to view documents. The advantages and problems with using Internet Explorer were discussed in  http://www.cs.odu.edu/~potluri/winnt/week3.html.    Because of  time constraints, we  used Form view for server and client windows and we used RichEditCtrl Box for viewing document text. This is the reason, why we can only view text files. Whenever the server opens a new document it sends the whole document text to all the clients. The document  is read only and editing of the text is not allowed.     

3. Basically the server is a multi-threaded process. Obviously we have the main thread which is a user interface thread and handles windows messages. We cannot have the accept system call in this thread because it is a blocking call. So, we created a worker thread whose sole purpose is to accept connections and create a new thread for each connection accepted. This new thread handles that particular client. As mentioned earlier, the server maintains a list of clients currently connected. Hence there is a need for communication between the main thread and the client worker threads. The main thread also needs to communicate with the client worker threads when an event of interest occurs in the window. Right now we are interested in three window events, opening a file, scrolling the file and highlighting of text. Whenever these window events occur, they need to be sent to all the clients so that they can take appropriate actions.

4. Each client thread waits on four semaphores which are released by the main thread whenever appropriate actions occur. The first three semaphores are there for window event communication(opening a file, scrolling and highlighting). The fourth semaphore is there so that socket connections with the clients are checked periodically for disconnects so that the client list in the server can be updated. All the client worker threads do is to wait on these semaphores and take appropriate actions based on which semaphore is released.

5. Whenever the list of clients is modified on connection or disconnection the worker threads set an synchronization event(CEvent). A timer in the main thread checks this event periodically which allows redrawing of the client list. There is another timer which does the job of  releasing the fourth semaphore in each of the client worker threads so that the sockets can be checked for disconnections.


          We encountered the readers and writers problem in this project. When the server wants to send  a message it will release a semaphore,  the client worker thread reads the necessary data set by main thread to send to client process.  When document is scrolled down first visible line of the document is sent as message. When some portion of document is highlighted then first and last character index of this highlighted text is sent to the client. When file is changed, the file name and total file text are sent as strings. All  these values are modified by main thread and these values are read by the client worker threads. We have the multiple reader, single writer problem over here. We did not want to serialize the access to the document data in the multiple reader case.  In Solaris we can solve this problem using read locks and write locks, provided by solaris threads or POSIX threads.  But in Windows NT we have to code these locks ourselves. Due to lack of time we have actually serialized client worker thread access by locking  the document data. 





                                                                                                   …………                       

                                                                                                           







Figure 5: Main thread and worker threads interaction.

6. The user interface looks like this..  On the server side we want to display  the file name, the file text  and the list of users along with the machines that the users are connected from. On the client side we want to display the name of the file currently being viewed and the file text itself.  There other windows for e.g. the window that asks the user whether he wants to accept the connection from the server or not. There are numerous message boxes provided for user convenience.



Figure  6: Client’s decision window.













We have covered most of the significant problems in this section. There were other minor problems that took more time than these problems. For example we cannot use RichEditCtrl dialogue unless we declare BOOL AFXAPI AfxInitRichEdit( ) function before its usage. 

Lessons Learned:
                 There were a lot of things that we learned from doing this project. Most of them were at the Win32 level. The learning part of the project was especially interesting but  none of the ideas as such materialized. The following is a list of things we learnt from the project:-

1. Researched the scope of starting remote processes, can be done only with the service control manager.

2. Learnt how to start child processes on WindowsNT.

3. Learnt how to create and communicate using UDP sockets.

4. Learnt how to achieve synchronization using semaphores, critical sections and events.

5. Learnt how to use the registry effectively to store and retrieve data.

6. Gained experience in using the RichEditCtrl control.

7. Gained experience in our writing our own marshalling code.

For a detailed discussion of our learning part, please refer to the weekly progress reports.

Future Work:

                     There is lot of scope for future work.  Before we discuss about future work we want to talk about  what we are doing now. We are actually keeping client and server in perfect sync. Client is just a view window and it is almost disabled except for exit and resizing.  Whatever the server shows will appear on the client. 

1. We can remove the condition “Server and client must be in perfect sync”. Client can be given control of  being able to use his vertical scrolling capability..

2. We are providing only text view. But in general documents will be in different formats. To have a universal appeal a more general viewer can be used. Internet Explorer is a right tool for that. If we could use Internet explorer instead of RichEditCtrl dialogue box we can achieve universal appeal. For more details visit http://www.cs.odu.edu/~potluri/winnt/week3.html. 

3. We can also add document-editing capabilities. This will lead to more complications. This will change project from coordinated viewing to coordinated editing of the documents.  May be this extension is too ambitious, complicated and requires thorough knowledge of distributed and networked systems.

4. There can be whole range of such collaborative tools written which use the daemon provided with this project. 

These are some of the extensions for this project. Like other collaborative tools future extensions of this project are unlimited.

Instructions on how to use:

1. Compile the daemon, client and server programs.

2. Run the client executable once without arguments either from the Start, Run.. dialog box or from NT explorer. This will register the client executable so that the daemon can look it up when the server wants to start the client.

3. Run the daemon.

4. Run the server. Right now the server starts up two clients on localhost for giving a demo of the project. The server does not send the full path name of the client executable to the daemon. It just sends the short name “RemoteViewClient” which is then looked up by the daemon in the registry to find the full path name.

5. Use the server to open a “.txt” file and start scrolling, highlighting etc and see that the client shows exactly what the server is currently viewing.

Note: Starting the client program without arguments will register the executable in the registry. If you want to remove client from registry, run the client executable from the Start,Run.. dialog box with /u as the parameter.  

Appendix:

                    This appendix describes as to how the registry is used by the daemon in starting up client programs. The daemon is designed to be generic in the sense that any  software which adheres to the client/server/daemon philosophy can use the daemon to startup their client processes. When the client program is run without any arguments for registering , the registration entry is found under HKEY_CURRENT_USER/Software/Daemon/RemoteViewClient key. There is a value entry under this key that has the name “Path” and the value of that value entry is the full path name of the client executable. So any software that adheres to this philosphy should code their client program so that they get registered under HKEY_CURRENT_USER/sofware/Daemon key with whatever short name they choose(in this case it is “RemoteViewClient”). The server can either supply the full path name of the client executable or the short name to the daemon. When supplied with the short name, the registry is queried and the path name to the executable is got to start up the client process. The reason we chose HKEY_CURRENT_USER  as the top level key instead of the others is that once the registration is done, even if the user logs in to another machine, the registration is already there. Obviously, the full path name specified in the value entry should also be valid on all machines. Hence the suggestion that the client executable be installed under the user’s home directory tree so that he need not reinstall the client executable on all machines he logs in.  When the user moves the client executables, all he needs to do is to re-register.  When the user wants to get rid of the executable, he can unregister by following the directions specified above.       

� EMBED MS_ClipArt_Gallery  ���





� EMBED MS_ClipArt_Gallery  ���





� EMBED MS_ClipArt_Gallery  ���





� EMBED MS_ClipArt_Gallery  ���





                     


                         





Daemon





Daemon





Server Process














							


						UDP Datagrams


							        Socket open for accepting client


                                                                                                                              connections





Server








Socket for accepting clients





Packet to Daemon on client machine


(startup of client)














							


						UDP Datagrams


							   Sockets opened for client processes





� EMBED MS_ClipArt_Gallery  ���





Server Process





� EMBED MS_ClipArt_Gallery  ���





Daemon





Client Process





� EMBED MS_ClipArt_Gallery  ���





Daemon





Client Process





Main Thread which controls server window operations





 Thread waits on accept call





Worker thread waiting for main thread messages





Creates new worker threads





Worker thread waiting for main thread messages





Figure 4. Abstract thread view.





Main Thread which controls server window operations





Worker threads waits for main thread messages. Main thread releases semaphores (opening a file, scrolling, highlighting and socket diagnostics ). Worker thread  takes appropriate action.








File name:





Document view:





Wait for multiple  semaphores (blocks the client worker thread).





Figure 7: Client’s interface 





RichEdirCntrl





Edit











Scroll bars





Yes





No





                          Accept connection?








File name:





Document view:






































Client List:





Edit





RichEdirCtrl











List box





Figure 8: Server’s interface











_1017655098

_1017655944

