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a b s t r a c t

In this paper, extensions for the Conjugate Gradient Least Squares (CGLS) algorithm in
block forms, so-called Block Conjugate Gradient Least Squares (BCGLS), are described. Block
parameter matrices are designed to explore the block Krylov subspace so that multiple
right-hand sides can be treated simultaneously, while maintaining orthogonality and
minimization properties along iterations. Search subspace is reduced adaptively in case
of (near) rank deficiency to prevent breakdown. A deflated form of BCGLS is developed to
accelerate convergence. Numerical examples demonstrate effectiveness in handling rank
deficiency and efficiency in convergence accelerations in these BCGLS forms.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

We consider the problem of stably finding the least squares solutions to a linear system of equations withmultiple right-
hand sides,

AX = B

where A is an m × n(m ≥ n) sparse, rectangular or square matrix with rank n, X is an n × s unknown matrix, B is an m × s
right-hand side matrix, and s(s ≥ 1) is the number of right-hand sides. When A is large and sparse, block iterative methods
are natural candidates for solving the least squares problem with multiple right-hand sides.

Using blockmethods to solve the least squares problems has threemajor advantages. First of all, solutions corresponding
to multiple right-hand sides can be estimated simultaneously. This is particularly useful for applications such as multi-
objective optimization [1] interested in finding solutions with respect to different right-hand side vectors. Secondly,
compared to solvers with a single right-hand side, block methods can potentially accelerate convergence by exploring
multiple directions in Krylov subspace at each iteration. Thirdly, a block formulation can lead to computational efficiency
[2–4] for linear systems involving very large coefficient matrices. In particular, when the coefficient matrix A is too large
to fit in core memory or the elements of A need to be reproduced every time in use, a matrix–vector multiplication, which
requires a pass over all elements in A, is very computational costly. In this situation, passing over A becomes the main
computational bottleneck. Computing the action of A onmultiple vectors at once adds little to the overall cost of computing
a single matrix–vector product but significantly reduces the total number of passes over A. Moreover, if s ≪ n, the block
methods involve a lot ofmultiplication operations on ‘‘tall-and-skinny’’ matrices, which can be easily parallelizedwith Level
3 BLAS subroutines [5–7].
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Given a general linear system

Ax = b,

where A ∈ Rm×n, x ∈ Rn, and b ∈ Rm, the Conjugate Gradient (CG) method can be applied for minimizing the L2 norm
of the residual error, ∥r∥2

2 = ∥Ax − b∥2
2, in the corresponding normal equation. If the linear system is underdetermined

(m < n), the Conjugate Gradient Normal Equation (CGNE) method [8] solves the normal equation AATy = b for y and then
obtains the solution x by computing x = ATy. If the system is overdetermined (m > n), this becomes the least squares
problem. The Conjugate Gradient for Least Squares (CGLS) method, also known as the Conjugate Gradient Normal Residual
(CGNR) method [9,10], solves ATAx = ATb. The LSQRmethod [11,12] is derived from the Lanczos process with Golub–Kahan
bi-diagonalization to handle the least squares problems, which has been regarded as a mathematical equivalence of CGLS.
More recently, the LSMR method [13], a variant of LSQR, is developed to approximate least squares solutions, which is
equivalent to MINRES [14] for solving ATAx = ATb.

In this paper, we extend the Conjugate Gradient for Least Squares (CGLS) algorithm [9,15] to a Block Conjugate
Gradient for Least Squares (BCGLS) algorithm to handle least squares problemswithmultiple right-hand sides. Blockmatrix
operations in BCGLS are developed to approximate the least squares solutions by ensuring orthogonality properties while
minimizing the residual error function

Trace

(B − AX)T (B − AX)


,

over the underlying Krylov subspace, where trace(·) denotes the trace of a matrix. New forms of parameter matrices are
derived to reduce the basis of search space while maintaining orthogonality to avoid potential breakdown in case of rank
deficiency. Deflation techniques handling the extremeeigenvalues are applied in BCGLS to achieve convergence acceleration.

The rest of the paper is organized as follows. We firstly review the CGLS algorithm in Section 2. Then, in Section 3, we
present the BCGLS algorithm to handle the least squares problem with multiple right-hand sides. An improved form of the
BCGLS algorithm to handle rank deficiency is designed in Section 4. In Section 5, we describe the deflation techniques that
can be applied to the BCGLS algorithm to accelerate convergence. Numerical examples are reported in Section 6. Finally,
Section 7 summarizes our conclusions and future research directions.

2. CGLS algorithm

CGLS Algorithm

Input: A ∈ Rm×n, b ∈ Rm, initial guess x0 ∈ Rn, tolerance tol ∈ R, and maximum number
of iterationsmaxit ∈ R.
Output: an approximate solution xsol ∈ Rn.

r0 = b − Ax0
s0 = p0 = AT r0
γ0 = ∥s0∥2

for i = 0, · · · ,maxit
qi = Api
αi = γi/∥qi∥2

xi+1 = xi + αipi
ri+1 = ri − αiqi
if converged within tol, then stop.
si+1 = AT ri+1
γi+1 = ∥si+1∥

2

βi = γi+1/γi
pi+1 = si+1 + βipi

end
xsol = xi+1

CGLS was originally proposed by Hestenes and Stiefel [9] for solving the least squares problem. Starting from an initial
solution guess x0, a sequence of estimates {x1, x2, . . .} is generated to approximate the solution along the iterations in CGLS.
Vectors ri and pi denote the residual and the search direction at the ith iteration, respectively. Parameters αi and βi are
computed in a way to ensure that the following two important orthogonality properties hold along CGLS iterations,

(i) pTj A
T ri+1 = 0; (j < i + 1)

(ii) pTj A
TApi+1 = 0 (j < i + 1).
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As a result, the new solution xi+1 obtained at the ith iteration is not only the optimal approximation along the search
direction pi, but also a global minimizer of the residual error function ∥Ax − b∥2

2 over the exploited Krylov subspace,

span

AT r0,


ATA


AT r0, . . . ,


ATA

i
AT r0


.

CGLS is a memory-efficient algorithm in approximating the least squares solutions, where all previous search directions are
not necessary to be stored. Moreover, CGLS is mathematically equivalent to the Conjugate Gradient (CG) method on solving

the normal equation ATAx = ATb, and thus CGLS has the convergence rate of


1−
√

κ−1

1+
√

κ−1

2
, where κ = λn/λ1, λn and λ1 are

the nth and 1st eigenvalues of ATA ordered by magnitude, respectively. Furthermore, CGLS avoids the explicit computation
of ATA during iterations and appears to be more accurate compared to the other variants of CG for solving the least squares
problem [16,17].

3. Block Conjugate Gradient Least Squares (BCGLS) algorithm

BCGLS considers a linear system in block form with s right-hand sides in the block matrix B,

AX = B.

Compared to obtaining solution for each right-hand side individually in CGLS, BCGLS is a more effective scheme by treating
all right-hand sides simultaneously. BCGLS constructs Krylov subspace in block form [18,19], i.e.,

block-span

ATR0,


ATA


ATR0, . . . ,


ATA

i
ATR0, . . .


.

Here, ‘block-span’ is defined as
i=0

(ATA)iATR0Ψi


,

where Ψi ∈ Rs×s are related to the parameter matrices αj and βj (j ≤ i) in BCGLS. Then, a block quadratic function is
minimized over the block Krylov subspace, i.e.,

min
X

Trace

(B − AX)T (B − AX)


.

Block CGLS (BCGLS) Algorithm

Input: A ∈ Rm×n, B ∈ Rm×s, initial guess X0 ∈ Rn×s, tolerance tol ∈ R, and maximum
number of iterationsmaxit ∈ R.
Output: solution Xsol ∈ Rn×s.

R0 = B − AX0
S0 = ATR0
P0 = S0
for i = 0, · · · ,maxit

Qi = APi
αi = (Q T

i Qi)
−1STi Si

Xi+1 = Xi + Piαi
Ri+1 = Ri − Qiαi
if converged within tol, then stop.
Si+1 = ATRi+1
βi = (STi Si)

−1STi+1Si+1
Pi+1 = Si+1 + Piβi

end
Xsol = Xi+1

BCGLS starts with an n × s initial solution matrix X0. At the ith iteration, the new approximate block solution Xi+1 is
updated by Xi + Piαi and its residual matrix Ri+1 is evaluated in the search space spanned by Pi. A new search matrix Pi+1
specified by Si+1 + Piβi is evaluated. Notice that both αi and βi are now in matrix form, different from the scalar parameters
ofα andβ in CGLS. Similar to CGLS, orthogonality among vectors in the block residualmatrices aswell as the searchmatrices
is required to ensure the minimization property in the underlying Krylov subspace. Assuming the existences of (Q T

i Qi)
−1

and (STi Si)
−1, Lemma 1 shows that such orthogonality properties hold. We first prove Lemma 1 by induction and then we

show the minimization property of BCGLS in Theorem 2.
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Lemma 1. The following orthogonality relations hold for the residual matrices and the search matrices in the BCGLS Algorithm,

(i) PT
j A

TRi+1 = 0; (j < i + 1)

(ii) PT
j A

TAPi+1 = 0 (j < i + 1).

Proof. Lemma 1 is proved by induction.
Base case: when i = 0, it is easy to find that

PT
0 A

TR1 = PT
0 A

TR0 − PT
0 A

TAP0α0 = 0.

Since RT
0AA

TR1 = PT
0 A

TR1 = 0, we have

PT
0 A

TAP1 = PT
0 A

TAS1 + PT
0 A

TAP0β0

= PT
0 A

TAS1 + PT
0 A

TAP0(ST0 S0)
−1ST1 S1

= −(αT
0 )

−1RT
1AA

TR1 + (αT
0 )

−1RT
0AA

TR1 + PT
0 A

TAP0(ST0 S0)
−1ST1 S1

= 0.

Induction step: we assume that PT
j A

TRk = 0, RT
j AA

TRk = 0, and PT
j A

TAPk = 0 hold for all j < k. Then, we examine PT
j A

TRk+1

and PT
j A

TAPk+1(j < k + 1),

(i) PT
j A

TRk+1 = PT
j A

TRk − PT
j A

TAPkαk;
If j < k, according to the induction hypothesis, PT

j A
TRk+1 = 0;

If j = k, we have

PT
k A

TRk+1 = PT
k A

TRk − PT
k A

TAPkαk

= (Sk + Pk−1βk−1)
T ATRk − STk Sk

= STk Sk + βT
k−1P

T
k−1A

TRk − STk Sk
= 0.

(ii) In order to prove PT
j A

TAPk+1 = 0, we first show that RT
j AA

TRk+1 = 0.
If j = 0, it follows that RT

0AA
TRk+1 = RT

0AA
TRk − RT

0AA
TQkαk = 0;

If k ≥ j ≥ 1, we have

RT
j AA

TRk+1 = RT
j AA

TRk − RT
j AA

TQkαk

= RT
j AA

TRk − (PT
j A

TAPk − βT
j−1P

T
j−1A

TAPk)αi

= 0.

Based on RT
j AA

TRk+1 = 0, for j < k, PT
j A

TAPk+1 can be written as

PT
j A

TAPk+1 = PT
j A

TASk+1 + PT
j A

TAPkβk

= −(αT
j )

−1(Rj+1 − Rj)
TASk+1 + PT

j A
TAPkβk

= −(αT
j )

−1RT
j+1AA

TRk+1 + (αT
j )

−1RT
j AA

TRk+1 + PT
j A

TAPkβk

= 0.

When j = k, we have

PT
k A

TAPk+1 = −(αT
k )

−1RT
k+1AA

TRk+1 + PT
k A

TAPk(STk Sk)
−1STk+1Sk+1

= −(αT
k )

−1STk+1Sk+1 + (αT
k )

−1STk+1Sk+1

= 0.

Conclusion: Based on the principle of induction, statements (i) and (ii) are true for all j < i + 1. �

Theorem 2. At the ith iteration of BCGLS, Xi+1 is a global minimizer of the block residual error function

Trace

(B − AX)T (B − AX)


,

over the block Krylov subspace X0 + block-span

ATR0,


ATA


ATR0, . . . ,


ATA

i ATR0


.
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Proof. Let x(k)
i+1 denote the kth column of Xi+1 and let b(k) be the kth column of B. The quadratic function f (k)(x) for each

right-hand side in B is defined as

f (k)(x) = (b(k)
− Ax)T (b(k)

− Ax)

= xTATAx − 2b(k)TAx − b(k)Tb(k).

Since x(k)
i+1 is a point in x(k)

0 + block-span {P0, P1, . . . , Pi}, it can be expressed as

x(k)
i+1 = x(k)

0 + P0α
(k)
0 + P1α

(k)
1 + · · · + Piα

(k)
i

= x(k)
0 + [P0, P1, . . . , Pi] θ

(k)
i ,

where θ
(k)
i =


α

(k)
0

α
(k)
1
.
.
.

α
(k)
i

 and α
(k)
j is the kth column of parameter matrix αj (j ≤ i).

Differentiating f (k)(·) with respect to θ
(k)
i , we have

df (k)

x(k)
i+1


dθ (k)

i

= −2 ([P0, P1, . . . , Pi])T AT r (k)
i+1,

where r (k)
i+1 = b(k)

− Ax(k)
i+1 is the kth column of Ri+1. According to Lemma 1, PT

j A
TRi+1 = 0 for all j < i + 1, we have

df (k)

x(k)
i+1


dθ (k)

i

= 0,

which implies that x(k)
i+1 is the minimizer of f (k)(x) over x(k)

0 + block-span {P0, P1, . . . , Pi}.
As the search spaces Pj’s are constructed from the underlying block Krylov subspace, block-span {P0, P1, . . . , Pi} is an

equivalent space to

block-span

ATR0,


ATA


ATR0, . . . ,


ATA

i
ATR0


.

Because of

Trace

(B − AXi+1)

T (B − AXi+1)


=

s−1
k=0

f (k)

x(k)
i+1


,

where the s quadratic functions f (k)(·), k = 0, . . . , s − 1, for the s linear systems corresponding to the s right-hand sides
are independent, Xi+1 obtained from BCGLS is the global minimizer of the block quadratic function in the exploited block
Krylov subspace X0 + block-span


ATR0,


ATA


ATR0, . . . ,


ATA

i ATR0


. �

The minimization property of BCGLS indicates that an optimal point is chosen from X0 + block-span
ATR0,


ATA


ATR0, . . . ,


ATA

i ATR0


to be the least squares approximation at the ith iteration step, which can be expressed

as a polynomial Φi(ATA) of degree i, i.e.,

Φi(ATA) = X0 +

i
j=0

(ATA)jATR0Ψj,

where the coefficient matrices Ψj are related to the parameter matrices αk and βk (k ≤ j) in BCGLS. Therefore, similar to

the Block Conjugate Gradient (BCG) methods [20,19], BCGLS yields a faster convergence rate of


1−
√

κ ′−1

1+
√

κ ′−1

2

compared to

CGLS, where κ ′
= λn/λs, and λn and λs are the nth and sth eigenvalues of the product matrix ATA ordered by magnitude,

respectively.

4. Addressing the (near) breakdown problem

Despite the attractive advantages of block methods, similar to other block solvers [20–22], one practical issue of BCGLS
is the breakdown problem that potentially occurs along iterations. More specifically, during BCGLS iterations, some vectors
in the block matrices may become linearly dependent or zero, which leads to rank deficiency in these block matrices.
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Consequently, generating at least one of the parameter matrices has to evaluate the inverse of a singular matrix, which
results in BCGLS breakdown. Many situations can give rise to rank deficiency of block matrices, for instances, inappropriate
guess of initial vectors, unbalanced convergence speeds of multiple right hand sides, and accumulation of roundoff errors,
which have been analyzed in our previous work [19].

To ensure the numerical stability of block Krylov subspace methods, in general, there are several strategies in handling
rank deficiency situations, including restarting [20,23,24], keeping linearly dependent vectors and reintroducing in later
iterations [25,21,26], and reducing search space [27,19,22,18,28]. We here extend our previous work of Breakdown-Free
Conjugate Gradient (BFBCG) [19] to the more general block least squares problems.

Breakdown-Free BCGLS (BFBCGLS) Algorithm

Input: A ∈ Rm×n, B ∈ Rm×s, initial guess X0 ∈ Rn×s, tolerance tol ∈ R, and maximum
number of iterationsmaxit ∈ R.
Output: an approximate solution Xsol ∈ Rn×s.

R0 = B − AX0
S0 = ATR0P0 = orth(S0)
for i = 0, · · · ,maxitQi = APiαi = (Q T

i
Qi)

−1Q T
i Ri

Xi+1 = Xi +Piαi

Ri+1 = Ri − Qiαi
if converged within tol, then stop.
Si+1 = ATRi+1
if no rank deficiency occurs, thenβi = (STi Si)

−1STi+1Si+1,
elseβi = −(Q T

i
Qi)

−1Q T
i ASi+1

endifPi+1 = orth(Si+1 +Piβi)
end
Xsol = Xi+1

Algorithm Breakdown-Free BCGLS (BFBCGLS) presents a simple solution to address the potential breakdown problem
caused by rank deficiency in BCGLS. There are two key differences on the parameter matrices between BFBCGLS and BCGLS,
and here we use the matrix symbols with a ‘‘∼’’ notation to distinguish them. First, a rank revealing operation orth(·) is
applied to the search direction blocksPi to remove linearly dependent or zero vectors. When rank deficiency occurs at the
ith iteration, the dimension of space Pi spanned byPi reduces from s to ri(ri < s) and correspondingly the search blockPi
shrinks to be an n× ri matrix. Second, with respect to the change in search direction blockPi, the parameter matricesαi andβi become ri × s rectangular matrices andQi appears to bem× ri. Either QR factorization with column pivoting or a Singular
Value Decomposition (SVD) on Si+1 +Piβi can be used to detect the reduction of the dimension of search space Pi+1 and to
construct an orthogonal basisPi+1 of the reduced search spacePi+1. Due to the fact that theminimization property of BCGLS
relies on the orthogonality among block residualmatrices aswell as searchmatrices, Theorems 3 and 6 show that there exist
parameter matricesαi andβi that guarantee such orthogonality properties in case of rank deficiency, respectively.

Theorem 3. Suppose that rank deficiency occurs at the ith iteration. Let Pi ∈ Rn×ri be an orthonormal basis of search space Pi
with dimension ri(ri < s) at the ith iteration and Qi = APi. Then, there exists a parameter matrixαi ∈ Rri×s

αi = (Q T
i
Qi)

−1Q T
i Ri,

so that

(i) PT
i A

TRi+1 = 0;
(ii) PT

j A
TRi+1 = 0 (for all j < i + 1), if all previous search spaces Pj(j ≤ i) are ATA-orthogonal.

Proof. Since A is an m × n(m ≥ n) matrix of rank n and Pi ∈ Rn×ri is an orthonormal basis of search space Pi,Q T
i
Qi = PT

i A
TAPi ∈ Rri×ri is nonsingular. Therefore, there exists a parametermatrixαi ∈ Rri×s such thatαi = (Q T

i
Qi)

−1Q T
i Ri.
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(i) Based on residual recurrence formula

Ri+1 = Ri − Qiαi = Ri − APiαi, (1)

left multiplying both sides of (1) byPT
i A

T , we havePT
i A

TRi+1 = PT
i A

TRi −PT
i A

TAPiαi

= PT
i A

TRi −PT
i A

TAPi(Q T
i
Qi)

−1Q T
i Ri

= 0.

(ii) Left multiplying both sides of (1) byPT
i−1A

T and thenPT
i−1A

TRi+1 = PT
i−1A

TRi −PT
i−1A

TAPiαi.

Based on (i), with derivation ofαi−1 given in BFBCGLS,PT
i−1A

TRi = 0 holds. Since all previous search spaces Pj(j ≤ i) are
ATA-orthogonal, we havePT

i−1A
TAPi = 0 and thusPT

i−1A
TRi+1 = 0. By induction, we can conclude thatPT

j A
TRi+1 for all

j < i + 1. �

According to Theorem 3, other orthogonality relations stated in Corollaries 4 and 5 can also be obtained. These
orthogonality properties are used in the proof of Theorem 6. The proofs for Corollaries 4 and 5 are included in the Appendix.

Corollary 4. Assuming that all previous search spaces Pj(j ≤ i) are ATA-orthogonal, then RT
i+1AA

TRj = 0, for j < i + 1.

Corollary 5. RT
i+1AA

TAPj = 0, for j < i.

Maintaining ATA-orthogonality among search spaces is critical to ensure theminimization property of BCGLS, as analyzed
in Section 3. Theorem6 shows that the derivation of parametermatrixβi can lead to an orthogonal basisPi+1 ATA-orthogonal
to all previous search spaces.

Theorem 6. Suppose that rank deficiency occurs at the ith iteration in BCGLS. Let Pi ∈ Rn×ri be an orthonormal basis of search
space Pi with dimension ri(ri < s), Qi = APi, and Si+1 = ATRi+1. Then, there exists a parameter matrixβi ∈ Rri×s

βi = −(Q T
i
Qi)

−1Q T
i ASi+1,

so that the new search space Pi+1 obtained from ATRi+1 is ATA-orthogonal to all previous search spaces Pj where j < i + 1.

Proof. Since A is anm×n(m ≥ n) sparse matrix of rank n andPi ∈ Rn×ri is an orthonormal basis of search space Pi,Q T
i
Qi =PT

i A
TAPi ∈ Rri×ri is nonsingular. Therefore, there exists a series of matricesβi ∈ Rri×s such thatβi = −(Q T

i
Qi)

−1Q T
i ASi+1.

Since Pi+1 can be derived from

Pi+1 = Si+1 +Piβi, (2)

where Si+1 = ATRi+1 andβi is the associated weight matrix ofPi, we first show thatPT
j A

TAPi+1 = 0, for all j < i.
Left multiplying (2) both sides byPT

j A
TAwhere j < i, we have

PT
j A

TAPi+1 = PT
j A

TASi+1 +PT
j A

TAPiβi

= PT
j A

TAATRi+1 +PT
j A

TAPiβi

= PT
j A

TAATRi+1.

According to Corollary 5, we can get RT
i+1AA

TAPj = 0 for all j < i. Assuming thatPT
j A

TAPi = 0(j < i),PT
j A

TAPi+1 = 0 is
obtained for all j < i.

Then, we can show thatPT
i A

TAPi+1 = 0 by left multiplying (2) both sides byPT
i A

TA,PT
i A

TAPi+1 = PT
i A

TAATRi+1 +PT
i A

TAPiβi

= PT
i A

TAATRi+1 −PT
i A

TAPi(Q T
i
Qi)

−1Q T
i ASi+1

= PT
i A

TAATRi+1 −PT
i A

TAATRi+1

= 0.

Let the range space of Pi+1 be the new search spacePi+1 and then the new search spacePi+1 is ATA-orthogonal to all previous
search spaces Pj(j < i + 1). �
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In case of rank deficiency, the rectangular parametermatricesαi andβi are calculatedwithout estimating the inverse of a
non-full rankmatrix in BFBCGLS. As a result, the orthogonality properties aremaintained in search space and the breakdown
problem due to rank deficiency can be avoided.

In practice, it is very rare that the residual blockhas exact linear dependency inBCGLS; however,muchmore often, vectors
in the residual blockwill become nearly linearly dependent. Studies [29,30] have shown that the nearly linear dependency in
the residual block may cause near-breakdown and have a serious impact to convergence of block Krylov subspace methods.
In BFBCGLS, linear dependency in the residual block Si ismonitored. If the smallest eigenvalue of Si is lower than a designated
threshold parameter τ , the search spacewill be reduced accordingly in BFBCGLS. The linear dependency threshold parameter
τ has an impact on solution precision aswell as convergence speed and needs to be carefully selected,whichwill be analyzed
in Section 6.

5. BCGLS algorithm with deflation

Deflation is one of the popular techniques used in Krylov subspace methods to accelerate convergence via pre-adding
the Krylov subspace with a space spanned by a deflation matrix [31–33], which contains approximations to the extreme
eigenvectors. Deflation has been used widely to handle positive definite systems [34,35] and unsymmetric systems
[36–39]. Recently, when multiple right-hand sides in a linear system are considered, deflation has been applied to BCG [23]
and BGMRES [26]. More comprehensive analysis on Krylov subspace methods with deflation can be found in [32,31,26,40].

Deflation can also be applied to BCGLS to improve convergence in finding solutions for least squares problems. Given a
deflation matrixW , an augmented block Krylov subspace

block-span

W , ATR0,


ATA


ATR0, . . . ,


ATA

i
ATR0, . . .


,

is constructed. In BCGLS with Deflation (BCGLSD), an initial guess X0 is formed as

X0 = X−1 + W

LT L

−1
LTR−1,

whereX−1 is an arbitrarymatrix and L = AW . Meanwhile,matrix orthogonalizations related toW are carried out to generate
the subsequent search matrices.

BCGLS Algorithm with Deflation (BCGLSD)

Input: A ∈ Rm×n, B ∈ Rm×s, initial guess X−1 ∈ Rn×s, tolerance tol ∈ R, maximum number
of iterationsmaxit ∈ R, and deflation matrixW ∈ Rn×t .
Output: an approximate solution Xsol ∈ Rn×s.

L = AW
R−1 = B − AX−1

X0 = X−1 + W

LT L

−1 LTR−1
R0 = B − AX0
S0 = ATR0P0 = orth(S0 − W


LT L

−1 LTAS0)
for i = 0, · · · ,maxitQi = APiαi = (Q T

i
Qi)

−1Q T
i Ri

Xi+1 = Xi +Piαi

Ri+1 = Ri − Qiαi
if converged within tol, then stop.
Si+1 = ATRi+1βi = −(Q T

i
Qi)

−1Q T
i ASi+1Pi+1 = orth(Si+1 +Piβi − W


LT L

−1 LTASi+1)
end
Xsol = Xi+1

Theorem 7 shows that the residual matrices Ri(i ≥ 0) and the search matricesPi(i ≥ 0) are constructed A-orthogonal
and ATA-orthogonal to deflation matrixW in BCGLSD, respectively.

Theorem 7. Given a deflation matrix W, the following two orthogonality relations hold in BCGLSD,
(i) W TATAPi = 0, (i ≥ 0);
(ii) W TATRi = 0, (i ≥ 0).



H. Ji, Y. Li / Journal of Computational and Applied Mathematics 317 (2017) 203–217 211

Proof. (i) For any k ≥ 0, since Pk+1 is an orthogonal basis of the space spanned by the columns of Sk+1 + Pkβk −

W (LT L)−1LTASk+1, there exists an s × rk matrix δ such thatPk+1 = (Sk+1 +Pkβk − W (LT L)−1LTASk+1)δ.

Then, we have

W TATAPk+1 = W TATA(Sk+1 +Pkβk − W (LT L)−1LTASk+1)δ

= W TATAPkβkδ.

Clearly, becauseW TATAP0 = 0, subsequently, W TATAPi = 0 for all i ≥ 0.
(ii) Since Rk+1 = Rk − Qkαk and (i), we have

W TATRk+1 = W TATRk − W TATQkαk

= W TATRk.

As X0 = X−1 + W (LT L)−1LTR−1 and R0 = (I − AW (LT L)−1LT )R−1, it follows that

W TATR0 = W TAT (I − AW (LT L)−1LT )R−1 = 0.

As a deduction, we can getW TATRi = 0 for all i ≥ 0. �

According to Theorem 7, in the subsequent BCGLSD iterations, the block Krylov subspace

block-span

ATR0,


ATA


ATR0, . . . ,


ATA

i
ATR0, . . .


,

is constructed to be orthogonal to the subspace spanned byW . Let H = I −W (LT L)−1LTA be the orthogonal projection onto
the orthogonal complement ofW , BCGLSD is in fact equivalent to BCGLS starting with ATR0 on a systemwith a transformed
coefficient matrix HTATAH .

The ideal deflation matrix W is composed of the exact extreme eigenvectors of ATA. Assuming that the columns in W
contain t eigenvectors of matrix ATA corresponding to the t smallest eigenvalues, the impacts from these eigenvectors of
matrix ATA can be removed frommatrix HTATAH at the beginning, and thus BCGLSD has potentially faster convergence in a
deflated system with a smaller condition number κ ′′

= λn/λs+t , where λn and λs+t are the nth and (s + t)th eigenvalues of
ATA, respectively. In practice, fast approximations to the eigenvectors corresponding to the extreme eigenvalues are often
obtained from a separate Lanczos [33,23] or Arnoldi process [37,26].

6. Numerical results

We present three numerical examples to illustrate the capability of various forms of BCGLS in handling (near) rank
deficiency and accelerating convergence using deflation. The sparse matrices used in these examples are obtained from
the UFL sparse matrix collection [41].

6.1. Handling rank deficiency

We compute the least squares solutions of a linear system with coefficient matrix ‘‘illc1850’’ to demonstrate the
robustness of BFBCGLS in case of rank deficiency. ‘‘illc1850’’ is a 1850×712 rectangular matrix with 8636 nonzero elements
arisen from a least squares problem in surveying. A right-hand side block matrix B containing 100 column vectors with full
column rank are generated randomly. A system is considered converged if the relative residual error of each solution with
respect to its corresponding right-hand side is within the tolerance of 10−7.

We start BFBCGLSwith a zero initial solution block. Fig. 1 shows the number of columns in searchmatrix Pi after the rank-
revealing operations (upper), the condition number of Q T

i Qi (middle), and the maximum and minimum relative residual
errors among all solution columns in Xi (lower) along BFBCGLS iterations. One can find that rank deficiency (from 100 down
to 88) starts to occur at the 6th iteration. After all, BFBCGLS is able to continue to explore the Krylov subspaces with reduced
search space without suffering breakdown, which leads to further residual error reduction in all systems as shown in Fig. 1
(lower).

Fig. 2 compares the solution precision measured by the maximum residual norm among columns in Xi with respect to
different linear dependency threshold parameter τ values. It is interesting to note that, when a large τ value is used, only
low precision solutions are obtained in BCGLS. This is due to the fact that, when a large τ value is reached, some solutions
or linear combinations of solutions are considered converged and the search space is reduced without further improving
these solutions. More importantly, a large τ value slows down convergence because of early reduction of search space. On
the other hand, a τ value close to floating-point precision (10−16) does not necessarily lead to more precise solutions due
to low-quality search spaces where the Galerkin conditions are not fully satisfied any more. Our results indicate that the
appropriate τ value should be in the range of 10−12–10−14 for BCGLS using double precision floating point operations.
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Fig. 1. Number of Columns in Pi (upper), condition number of Q T
i Qi(middle), andmaximum andminimum relative residual norms of columns in Xi (lower)

for a block linear system with 100 right hand sides using ‘‘illc1850’’ as the coefficient matrix along BFBCGLS iterations.

Fig. 2. Solution precisions obtained using different linear dependency threshold parameter τ values.

6.2. Convergence accelerations using deflation

We compare the convergence of CGLS, BCGLS, and BCGLSD on a least squares problem with coefficient matrix ‘‘wang4’’
from semiconductor device problem. ‘‘wang4’’ is a 26,068 × 26,068 unsymmetric matrix with 177,196 nonzero elements.
Assuming that we are only interested in the solution to a single right-hand side. To accommodate with the block form
in BCGLS and BCGLSD, we expand the single right-hand side to a block form with 100 right-hand sides by supplying 99
Gaussian random vectors to the right hand side. The deflation matrix W contains 50 approximate eigenvectors of matrix
‘‘wang4’’ estimated by an inverse randomized Singular Value Decomposition (SVD) algorithm [42–44].

Fig. 3 displays the numerical results of CGLS, BCGLS, and BCGLSD. One can clearly observe that by expanding the linear
system from a single right-hand side to a block form with multiple right-hand sides, BCGLS (1834 steps) requires less
iteration steps to converge to 10−7 relative residual error than CGLS (59,765 steps). Even though overall BCGLS involves
more computational operations measured by the total number of matrix–vector multiplications than those of CGLS, it is
important to note that BCGLS is a communication-efficient algorithm that can significantly reduce the number of passes over
matrix A, the main computational bottleneck if passing over all elements in A is extremely costly. More importantly, when
an approximate deflation matrix is applied, convergence can be significantly accelerated, where the number of iterations to
reach convergence is further reduced down to 935 steps.
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Fig. 3. Comparison of convergence in CGLS, BCGLS, and BCGLSD on a least squares problem using ‘‘wang4’’ as the coefficient matrix.

Fig. 4. Distribution of the eigenvalues in ATA (‘‘gre_1107’’).

6.3. Handling ill-conditioned coefficient matrices using deflation

We use a linear system with ‘‘gre_1107’’, a 1107 × 1107 unsymmetric matrix with 5664 nonzero elements, as the
coefficient matrix to study the behavior of BCGLS in ill-conditioned least squares problems. Fig. 4 shows the distribution
of the eigenvalues in ATA. One can find that the 40 extremely small eigenvalues lead to a large condition number in ATA.
The condition number of Q T

i Qi is bounded by that of ATA. As shown in Fig. 5, when the condition number of Q T
i Qi is small

during BCGLS iterations before step 11, orthogonality is well preserved. However, at iteration step 11, the large condition
number of Q T

11Q11 causes subsequent loss of orthogonality, as shown in the colormap of ATA-orthogonality among the first
31 searchmatrices, where the colors in Qi and Qj intersection correspond to the base-10 logarithms of the absolute values of
the elements in Q T

i Qj = PT
i A

TAPj. Consequently, BCGLS converges slowly and does not reach desired precision of 10−7 even
after 10,000 iterations. An appropriate deflationmatrix can address this issue and accelerate the convergence of BCGLS. Here
we use a deflation matrix consisting of 40 approximate eigenvectors corresponding to the 40 extreme eigenvalues obtained
from a separate Lanczos process. When the deflation matrix is applied, the condition number of Q T

i Qi remains relatively
small and orthogonality is mostly preserved during BCGLSD iterations, as shown in Fig. 6. As a result, BCGLSD converges at
iteration step 11.

7. Conclusions and future research directions

In this paper, we extend the CGLS method to a block form to evaluate solutions for least squares problems with
multiple right-hand sides. To address the potential breakdown problem due to rank deficiency, we derive new parameter
matrices to generate search matrices with variable block size. Finally, a deflated form of BCGLS is designed to handle the
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Fig. 5. Colormap of ATA-orthogonality between Search Matrices in the first 31 iterations (upper), condition number of Q T
i Qi (middle), and maximum and

minimum relative residual norms of columns in Xi (lower) for a block linear system with 100 right hand sides using ‘‘gre_1107’’ as the coefficient matrix
along BCGLS iterations. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

extreme eigenvalues to accelerate convergence. The corresponding numerical stability and computational efficiency are
demonstrated in numerical examples.

In addition to BCGLS which is based on CGLS, block LSQR [45], which extends LSQR by block bi-diagonalization [11,12],
can also be used to solve least squares problems with multiple right-hand sides. Björck [16,46] showed that LSQR is likely to
yield less iterations than CGLS to reach convergence but at the cost ofmore storage and computation per iteration. However,
the block LSQR described in [45] suffers from breakdown when rank deficiency occurs. The variable block size method and
deflation scheme provided in this paper may also be applied to block LSQR, as well as the other block Krylov subspace
methods that employ short recurrences to update search matrices [47], to address the breakdown problem and accelerate
convergence. After all, these will become our future research directions.
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Fig. 6. Colormap of ATA-orthogonality between Search Matrices in the first 12 iterations (upper), condition number of Q T
i Qi (middle), and maximum and

minimum relative residual norms of columns in Xi (lower) for a block linear system with 100 right hand sides using ‘‘gre_1107’’ as the coefficient matrix
along BCGLSD iterations, where the deflation matrix consists of 40 approximated extreme eigenvectors. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

Appendix

Corollary A.1. Assuming that all previous search spaces Pj(j ≤ i) are ATA-orthogonal, then RT
i+1AA

TRj = 0, for j < i + 1.

Proof. AsPi ∈ Rn×ri is an orthonormal basis of search space Pi, the range space of ATRi +Pi−1βi−1, we have

ATRi +Pi−1βi−1 = Piδ,
where δ is an ri × smatrix of rank ri. Then, left multiplying both sides by RT

i+1A,

RT
i+1AA

TRi + RT
i+1APi−1βi−1 = RT

i+1APiδ.
Based on Theorem 3, we havePT

j A
TRi+1 = 0 for all j < i+ 1. Under the assumption that all previous search spaces Pj(j ≤ i)

are ATA-orthogonal, we can get RT
i+1AA

TRi = 0. By induction, we can conclude that RT
i+1AA

TRj = 0 for all j < i + 1. �

Corollary A.2. RT
i+1AA

TAPj = 0, for j < i.



216 H. Ji, Y. Li / Journal of Computational and Applied Mathematics 317 (2017) 203–217

Proof. Since Rj+1 = Rj − APjαj, left multiplying the equation by RT
i+1AA

T on both sides and we have

RT
i+1AA

TRj+1 = RT
i+1AA

TRj − RT
i+1AA

TAPjαj.

When j < i, according to Corollary A.1, we can get RT
i+1AA

TRj = 0 and RT
i+1AA

TRj+1 = 0. Therefore, RT
i+1AA

TAPjαj = 0 is
derived for all j < i.

Asαj = (Q T
j
Qj)

−1Q T
j Rj where Qj = APj, we have

RT
i+1AA

TAPj(PT
j A

TAPj)−1PT
j A

TRj = 0.

Since PT
j A

TAPj is an rj × rj matrix with full rank, PT
j A

TRj ∈ Rrj×s is a matrix of rank rj, and rj ≤ s, we finally obtain
RT
i+1AA

TAPj = 0, for all j < i. �
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