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1. INTRODUCTION

Prediction of the loop regions conformations in proteins is
important in structural biology for its wide applications in homo-
logy modeling,1 segment defining,2 protein design,3 characteriz-
ing protein functions,4,5 and ion channel simulation.6,7 Loop
structure prediction without the use of a structural template typi-
cally involves several phases, including sampling, clustering, re-
fining, and ranking.8,9 In the sampling phase, the loop conforma-
tion space is explored to produce a large ensemble of reasonable,
coarse-grain models. Then, representative models are selected
from the ensemble using a clustering algorithm to reduce redun-
dancy. These representative models are used to build fine-grain
models in the refining phase. Finally, in the ranking phase, the
models are assessed, and the top-ranked ones are determined
as the predicted results. The sampling phase is of particular
importance—if the sampling process cannot reach conforma-
tions close enough to the native, then it is unlikely to obtain a
high-resolution near-native model in the refining phase.

Although significantly smaller than that of a complete protein
molecule, the loop conformation space still poses sampling
challenges for loops of nontrivial length. To reduce the number

of degrees of freedom to achieve sampling efficiency, coarse-grain
approaches are often employed to construct loop conformations,
in which the loop peptide can be modeled using a reduced re-
presentation. A popular approach is to approximately represent
loop backbone conformations using a set of (ϕ, ψ) torsion
angles.8�14 Alternatively, fragment libraries15,16 with backbone
atoms and a few side chain atoms can also be used to buildup loop
backbones. Loop closure constraints are satisfied by finding
analytical solutions,46,47 using random tweak,17 inverse kinematics,18

or Cyclic Coordinate Descent (CCD).19 The recent kinematic
closure approach developed by Mandell et al.20 can lead to loop
buildups with subangstrom resolution in long loops.

Coupled with reduced representations in loop modeling, coarse-
grain energy (scoring) functions are developed to guide the sampl-
ing process toward native-like conformations. For example, Zhang
et al.22 developed a soft-sphere potential to fast construct loops.
Rohl et al.15 modeled loops by optimizing the Rosetta score using
fragment buildup.We also developed a statistics-based potential22 to
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ABSTRACT: Accurately predicting loop structures is important for
understanding functions of many proteins. In order to obtain loop
models with high accuracy, efficiently sampling the loop conforma-
tion space to discover reasonable structures is a critical step. In loop
conformation sampling, coarse-grain energy (scoring) functions coupl-
ing with reduced protein representations are often used to reduce the
number of degrees of freedom aswell as sampling computational time.
However, due to implicitly considering many factors by reduced
representations, the coarse-grain scoring functionsmay have potential
insensitivity and inaccuracy, which can mislead the sampling process
and consequently ignore important loop conformations. In this paper, we present a new computational sampling approach to obtain
reasonable loop backbonemodels, so-called the Pareto optimal sampling (POS)method.The rationale of the POSmethod is to sample
the function space of multiple, carefully selected scoring functions to discover an ensemble of diversified structures yielding Pareto
optimality to all sampled conformations. The POS method can efficiently tolerate insensitivity and inaccuracy in individual scoring
functions and thereby lead to significant accuracy improvement in loop structure prediction. We apply the POS method to a set of
4�12-residue loop targets using a function space composed of backbone-only Rosetta and distance-scale finite ideal-gas reference
(DFIRE) and a triplet backbone dihedral potential developed in our lab. Our computational results show that in 501 out of 502 targets,
themodel sets generated by POS contain structuremodels are within subangstrom resolution.Moreover, the top-rankedmodels have a
root mean square deviation (rmsd) less than 1 A in 96.8, 84.1, and 72.2% of the short (4�6 residues), medium (7�9 residues), and
long (10�12 residues) targets, respectively, when the all-atommodels are generated by local optimization from the backbone models
and are ranked by our recently developed Pareto optimal consensus (POC)method. Similar sampling effectiveness can also be found in
a set of 13-residue loop targets.
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assess loop torsions based on the distribution of adjacent ϕ�ψ
backbone torsion angle pairs in the context of all possible re-
sidues as derived from structural data in a loop library. Jacobson
et al.8 built loop samples using a high-resolution rotamer library
and then filtered them with various heuristic scores/criteria.
On the other hand, all-atom statistics- or physics-based energy
(scoring) functions are used in the refining and ranking phases.
Distance-scale finite ideal-gas reference (DFIRE), the statistics-
based scoring function, has proven to be successful in loop
selection.26 Cui et al. developed a grid-based force field, where
their Monte Carlo sampling approach can obtain solutions less
than 1.8 A in a test set containing 14 protein loops.48 Jacobson
et al.,8 Zhu et al.,9 Rapp and Friesner,12 de Bakker et al.,13 Felts
et al.,14 and Rapp et al.23 modeled loops using physics-based
potentials, such as CHARMM,29 AMBER,30 and OPLS-AA31

with various solvent models. Other terms can also be incorpo-
rated to improve the accuracy of the scoring functions. For
example, Xiang et al.11 developed a combined energy function
with force-field energy and root-mean-square deviation (rmsd)
dependent terms, while Fogolari and Tosatto24 took advantage
of the concept of “colony energy” by considering the loop entropy
(an important component in flexible loops) as part of the total free
energy.

The scoring functions play a critical role in loop modeling.
One of the problems in coarse-grain scoring functions is their
potential inaccuracy due to the fact that many factors are treated
implicitly, and thus the coarse-grain score may not faithfully re-
flect the true energy surface. Although not always, distortion
introduced by the coarse-grain scoring functions may potentially
mislead the sampling process and thus ignore some important
conformations. Even the all-atom scoring functions have the
insensitivity problem, i.e., the native or the near native-like
conformations often do not necessarily exhibit the lowest scores.
The scoring function inaccuracy or insensitivity has been shown
and discussed in several loop modeling studies8,10,11,25,27 with a
variety of energy functions.

In this article, we report a Pareto optimal sampling (POS)
method to sample loop conformation space. The fundamental
idea of the POS method is to build a function space composed of
multiple, carefully selected scoring functions and then to sample
an ensemble of diversified conformations yielding Pareto optim-
ality. In certain sense, the POS method can be thought as a super
consensus method—instead of finding a conformation with
optimality in a scoring function or certain scoring functions
combination, the POS method intends to cover all structurally
diversified conformations with optimal consensus in every pos-
sible positive score combinations. This is achieved by obtaining
diverse coverage of the Pareto optimal front of the function
space composed of multiple scoring functions. The POS sampled
conformations are expected to tolerate insensitivity in individual
scoring functions, particularly those in coarse grain and thus
increase the chance of discovering native-like, good conforma-
tions. We apply the POS method to a set of 4�12-residue loop
targets and compare with the decoy sets generated by Jacobson
et al.8 using a hierarchical all-atom prediction approach. The
loops in Jacobson’s decoy sets are regarded as “difficult”
targets,26,33 and Jacobson’s decoy sets have been frequently used
as a benchmark for loop prediction.26,33,34 In addition to the loop
targets in Jacobson’s decoy sets, we compare POS sampling
with recent results9 on a set of 13-residue targets. Theoretical
comparisons between POS and other consensus methods are
also discussed.

2. METHODS

2.1. Pareto Optimality. The theoretical foundation of the
POS method is the Pareto optimality,36 whose definition is
based on the dominance relationship. Without loss of generality,
assuming that minimization is the optimization goal for all scoring
functions, a conformation u is said to dominate another conforma-
tion v (u dominates v) if both conditions (i) and (ii) are satisfied:
(i) for each scoring function fi(.), fi(u) e fi(v) holds for all i.
(ii) there is at least one scoring function fj(.) where fj(u) <

fj(v) is satisfied.By definition, the conformations which
are not dominated by any other conformations in the
conformation set, form the Pareto optimal solution set.
The complete set of Pareto optimal solutions is referred
to as the Pareto optimal front.

2.2. Function Space of Multiple Scoring Functions. We
employ three scoring functions, including backbone Rosetta,
DFIRE, and Triplet, to form the function space for loop sampling
in POS. These scoring functions all have demonstrated their
effectiveness in loop modeling. The Rosetta scoring function is a
complex combination of physics- and statistics-based energy
terms, which is one of the most successful tools in predicting
overall backbone fold for protein domains that lacks any detect-
able structural analogs in the Protein Data Bank (PDB).38,39 The
Rosetta program has also demonstrated success in predicting
protein loops.15,20 DFIRE is a statistics-based potential energy
which was derived from a high-resolution protein structure
data set. DFIRE has previously proven to be successful in loop
selection26 as well as in filtering unreasonable models.34 The
Triplet torsion angle scoring function developed in our lab is
based on the distribution of adjacent ϕ�ψ backbone torsion
angle pairs in the context of all possible adjacent residue triplets
as derived from the coil library.37 The Triplet scoring function
has shown its effectiveness in distinguishing the native loop from
the erroneous ones.22 Due to the fact that they are developed
using different methods and data sets, there is little correlation
among these three scoring functions.
2.3. Population-Based Sampling Guided byMultiple Scor-

ing Functions. In most optimization methods used in pro-
tein structure modeling, the goal is to minimize a single scoring
(energy) function to search for a solution with lowest energy;
whereas in POS sampling involving multiple scoring functions,
there are two equally important goals: (i) sampling a set of solu-
tions near the Pareto optimal front; and (ii) obtaining a diverse
coverage of solutions near the Pareto optimal front. The POS
sampling also differs from the classical multiobjective optimiza-
tion (MOO) problems,36 in that POS is not only interested in the
conformations at the Pareto optimal front but also in those near
the Pareto optimal front with diversified structures.
The POS method is a population-based approach to sample

the loop backbone conformations in the function space of mul-
tiple scoring functions. In the population-based sampling meth-
od, initially, a population PwithN loop conformations,C1, ...,CN,
is randomly generated. Each loop structure conformationCiwith
n residues is represented by a vector (θ1, ..., θ2n), which re-
presents the dihedral angles of (ϕ1, ψ1, ..., ϕn, ψn). The dihedral
angles ofωi are kept constant at their average value of 180�, while
the bond angles and lengths also remain constant. Fitness is
designed to measure the dominance relationship and popularity
of a conformation in the population. Differential evolution (DE)
style41 crossover for continuous torsion angles is developed to
generate new conformations satisfying loop closure condition.
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Adaptive Monte Carlo is used to determine acceptance of new
conformations based on the Metropolis rule. The population is
updated by the Metropolis transition, and only the top-ranked
conformations are selected for reproduction, which will evolve
the population toward the Pareto optimal front. Moreover,
the similarities between conformations in the population can
be exploited, which will allow the sampling process to discriminate
the popular ones so as to achieve solution diversity.
2.4. Fitness Assignment. The POS sampling program uses a

fitness assignment scheme based on the number of external non-
dominated points.40 Considering a population P with N indivi-
dual conformations, C1, ..., CN, the fitness calculation is based on
the strength si of each nondominated conformation Ci, which is
defined as the proportion of conformations in P dominated byCi.
As a result, the fitness of an individual Ci is defined as

fitðCiÞ ¼
si Ci is nondominated

1 þ ∑
Cj dominates Ci

sj Ci is dominated

8><
>:

The conformations with fitness less than 1.0 are the nondomi-
nated ones in the population. For the nondominated conforma-
tions, the fitness function achieves diversity by biasing to those
with less dominated conformations while discriminating the
popular conformations dominating a lot of conformations.40

For the dominated conformations, preferences are given to those
dominated by fewer conformations with less strength. Confor-
mations in a population are sorted according to their fitness, and
only the top m ones are allowed for reproduction in POS.
2.5. Differential Evolution Style Crossover. DE41 is used in

POS sampling to produce new conformations by crossing over
the selected conformations from the current population in loop
conformation sampling. We select the “DE/rand/2/exp” scheme
listed in DE,41 which is a robust scheme particularly suitable for
scoring functions with complicated landscapes. In “DE/rand/2/
exp” scheme, for each configuration Ci(θ1, ..., θ2n), a mutant
vector Vi is typically formed by

Vi ¼ Cr5 þ FðCr1 þ Cr2 � Cr3 � Cr4Þ
where i, r1, r2, r3, r4, and r5 are mutually distinct integer random
numbers in the interval [1, m], m refers to the top m conforma-
tions selected for reproduction, and F> 0 is a tunable amplification
control constant as described in DE.41 Other forms of mutant
vector generation are also provided in DE.41 Then, a new con-
formation Ci

0(θ10, ..., θ2n0) is generated by the crossover opera-
tion on Vi and Ci:

x0j ¼
vj j ¼ Ækæ2n, Æk þ 1æ2n, :::, Æk þ L� 1æ2n
xj otherwise

(

where Æ.æ2n denotes the modulo operation with modulus 2n, k is a
randomly generated integer from the interval [0, 2n� 1], L is an
integer drawn from [0, n� 1] with probability Pr(L = l) = (CR)l,
and CR ∈ [0, 1) is the crossover probability. Practical advice
suggests that CR = 0.9 and F = 0.8 are suitable choices in the DE
scheme.41 These parameter values are also adopted in our sampl-
ing algorithm.
After DE crossover, the loop closure condition of the new loop

conformation is usually not satisfied. The greedy heuristic cyclic
coordinate descent (CCD) algorithm19 is applied to each new
conformation to close the loop. To obtainminimum distortion of
the newly crossover section, CCD starts from the torsion angle

next to the crossover torsion segment. Figure 1 illustrates the
procedure of using DE-style crossover to generate new loop
conformation.
2.6. Adaptive Monte Carlo. In POS sampling, Monte Carlo

moves based on Metropolis transition are used to determine
acceptance of newly generated conformations in the population.
The transition probability depends only on the change of the
fitness function value. The Metropolis�Hastings ratio is calcu-
lated as

wðCi f Ci
0Þ ¼ e�½fitðCi

0Þ � fitðCiÞ�=T

The new configuration Ci
0 generated by DE is accepted with the

probability:

minð1,wðCi f Ci
0ÞÞ

T is the simulated temperature, which is used to control the
acceptance rate of the Metropolis transitions. Studies43,44,49 in
Monte Carlo method literature have shown that theMarkov chain
Monte Carlo (MCMC) sampler yields the best possible per-
formance with an acceptance rate of around 20%. In this paper,
we also maintain an acceptance rate of 15∼25% by adjusting
T in each iteration. When the acceptance rate is less than 15%,
T is increased by 10%. When the rate is more than 20%, T is
decreased by 10%.
Using DE in population-based MCMC is proved to guarantee

detailed balance.55 However, control the acceptance rate by
adjusting the simulated temperature T in POS may impact the
detailed balance nature of the underlying MCMC, and thus the
resulting samples may not strictly follow Boltzmann distribution.
Nevertheless, complying with detailed balance condition is not
necessary in this loop modeling application, since our goal is to
obtain a good coverage of loop conformations near the Pareto
optimal front.
2.7. Convergence Analysis.We evaluate the convergence of

the loop conformation sampling by measuring the hypervolume
indicator.42 For a population P(C1, ...,Ck, ...,CN), the hypervolume
indicator, HYP(P), relative to a reference point R, is defined as

HYPðPÞ ¼ ∪
k
VOLðSk,RÞ

R can be arbitrarily selected in the scoring function space, where
Ri g maxj (fi(Cj)) for all scoring functions f1, ..., fi, ..., fn. For
convenience, we select the worst scoring function values to build
R. VOL(U, V) is the Lebesgue measure of two points,U and V, in
the scoring function space, which is defined as VOL (U, V) =

Q
i

|Ui�Vi|. Sk is the corresponding point of conformationCk in the
scoring function space.
The hypervolume indicator measures the dominated volume

of the nondominated solutions. Generally, the dominated solu-
tions do not contribute to the hypervolume indicator, and the
worse case computational complexity of computing hypervo-
lume isO(M d-1), where d is the number of scoring functions and
M is the number of nondominated solutions. Usually, for large d,
calculation of hypervolume is very costly. However, in our loop
conformation sampling program using POS, only three scoring
functions are used, and thereby calculation of the hypervolume
indicator does not pose significant overhead to the overall sampl-
ing computation. The hypervolume indicator value is monitored
during the sampling process. Since POS is based on MCMC
transitions, we can calculate the autocorrelation function, ΓHYP-
(T), to evaluate the integrated autocorrelation time (IAT), τHYP,
to estimate the number of iterations to achieve convergence. The



1659 dx.doi.org/10.1021/ci200143u |J. Chem. Inf. Model. 2011, 51, 1656–1666

Journal of Chemical Information and Modeling ARTICLE

autocorrelation function, ΓHYP(T), is defined as

ΓHYPðTÞ ¼
∑
T

t¼ 0
covðHYPðP0Þ,HYPðPtÞÞ

varðHYPÞ
where HYP(Pt) refers to the hypervolume indicator of the POS
population P at time t. The IAT can be estimated by

τHYP =
1
2
þ ∑

∞

t¼ 1
ΓHYPðtÞ

Literature45 in MCMC indicates that the number of iterations,
NUM, for the sampler should be NUM . τHYP.
Moreover, due to the large conformation space, a single sampl-

ing run may not lead to sufficient coverage of the diversified con-
formations near the Pareto optimal front. As a result, we repeat the
sampling procedure with different random number sequences until
the overall hypervolume indicator of the all models generated stops
growing. The outputtedmodels from these sampling runs form the
backbone model set.
2.8. Sampling the Pareto Optimal Front. Figure 2 shows the

multiple scoring functions coordinate plots of the model sets in

Figure 1. DE crossover to produce new loop conformation. Segments from five randomly selected conformations in the current population are used to
build a mutant vector based on DE crossover. Then, for the ith loop conformation in the current population, the corresponding segment is replaced by
the mutant vector to build a new conformation. The CCD algorithm is applied to the new conformation, starting from the torsion angle right after
crossover, to ensure loop closure.
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targets 1alc (34:41), 1fnd (262:269), 1ptf (65:71), and 1onc
(70:78) obtained by the POS method. All scores are linearly
normalized in [0, 1]. As shown in Figure 2a, b, and c, respectively,
models yielding the lowest scores in DFIRE, Triplet, and Rosetta
have the best rmsd values (<0.5A), while those with lowest scores
in the other two scoring functions are far deviated with rmsd
>2.0A. This strongly indicates that neither DFIRE, Triplet, nor
Rosetta is a perfect scoring function—one may be effective in
some targets while fail in some others. More often, as shown in
the example in Figure 2d, the native-like models do not exhibit
minimum scores in either one of these scoring functions but exhi-
bit Pareto optimality in certain scoring functions combination.
Our computational results on 502 targets in Jacobson’s decoy set
show that, in 41 (8.2%) and 22 (4.4%) targets, the Pareto optimal
models with best rmsd values in the model set generated by POS
sampling are at least 0.5 and 1.0 A better in rmsd than the models

with lowest DFIRE, Triplet, or Rosetta scores, respectively.
Ideally, the POS method intends to capture all structurally diver-
sified conformations on the Pareto optimal front in the functional
space of the scoring functions.
2.9. All-Atom Prediction after Sampling. After sampling

using POS, three major steps are applied to the generated back-
bone model sets to obtain final all-atom prediction results. First
of all, the backbone model set is clustered with a 0.5 A cutoff, and
one representative candidate is selected for each cluster. Second,
the PLOP package8 is used to add side chains to the representa-
tive backbone models and then perform local optimization using
OPLS/AA force field with SGB solvent models to generate the
all-atommodel set. Finally, we use our recently developed Pareto
optimal consensus (POC) method27 to rank the all-atom mod-
els. Five scoring functions, including all-atom Rosetta, DFIRE,
DOPE, OPLS/AA, and triplet, are used to form the function

Figure 2. Multiple coordinate plots of normalized Rosetta, Triplet, and DFIRE. Each line corresponds to a loop conformation in the generated model
set, and the color of the line is given by its rmsd value defined in the color bar (0.0 A: blue and 4.0 A: red). The Rosetta, Triplet, and DFIRE scores are
linearly normalized in [0, 1], where the 0 and 1 correspond to the lowest and highest scores in individual scoring function, respectively. Models with
lowest scores in Rosetta, Triplet, and DFIRE respectively in 1alc (34:41), 1fnd (262:269), and 1ptf (65:71) are native-like models with rmsd <0.5 A. In
1onc (70:78), models with best rmsd do not exhibit lowest scores in either Rosetta, Triplet, or DFIRE but yield Pareto optimality in certain combination
of these scoring functions.
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space in POC. The top-ranked models are selected as the pre-
dicted models.

3. RESULTS

3.1. Sampling Efficiency. Figure 3 shows the comparison
of average rmsd of best models as well as the model set size in
the POS model and Jacobson’s decoy sets. One can find that for
the short (4�6 residues) and medium (7�9 residues) targets,
the POS model set is averagely smaller than Jacobson’s, while for
long targets (9�12 residues), the average sizes of the two model
sets are approximately the same. By comparing the resolution
of models, it is important to notice that the average rmsd’s of
the best models in the POS model set are lower than those in
Jacobson’s decoy set, particularly for medium and long targets.
Models within 1 A to the native are considered as native-like
models, andTable 1 lists all targets inwhich either POSor Jacobson’s
decoy set do not contain at least one native-like model. There are 20
out of 502 targets that Jacobson’s decoy set misses a native-like
model. In contrast, the model set generated by the POS method
has only one miss in target 1poa(79:83), which demonstrates the
efficiency of Pareto optimality based sampling by integrating
multiple scoring functions.
The 1poa (79:83) has some particularities that make it hard to

predict especially by the statistical potentials, which are trained
onmostly “regular” structures. Normally, a loop’s backbone folds
by packing itself against the rest of the protein. The loop usually
has buried hydrophobic residues that help its folding, while the
polar residues are exposed to the solvent. By contrast, 1poa (79:83)
has no hydrophobic residues, and a polar Asparagine residue is
partially buried forming two favorable hydrogen bonds inside the
protein (the black dashed lines in Figure 4). Also, the loop’s back-
bone is solvated and flexible (with two successive glycine residues).
The stability of this structure is helped by two disulfide bridges
(yellow bars in Figure 4) formed by cystine residues situated just
near the two ends of the loop, which is also a rare situation.
In addition to the sensitivity problem that the scoring func-

tionsmight have, the 1poa (79:83) case poses a sampling problem.
Our sampling approach is hierarchical, where the good backbone
conformations are first found, and then the side-chains are later
added and optimized. Nevertheless, in the case of 1poa (79:83),
the asparagine’s side chain is the key to the loop’s structure forma-
tion, and the backbone adapts to asparagine’s structure. As a result,

the backbone sampling approaches have difficulty in finding struc-
tures in the vicinity of the native.
In addition to the targets listed in Jacobson’s decoy set, we

also apply the POS method to a set of 13-residue targets listed in

Figure 3. Comparison of average rmsd of best models and model set
sizes in POS model and Jacobson’s decoy sets.

Table 1. List of All Targets That the Best Models in Either
POS or Jacobson’s Decoy Sets Have Rmsd over 1 A

PDB

RES:

start RES: end

best model

rmsd (A) in POS

best model rmsd (A)

in Jacobson’s decoyset

1dim 227 231 0.296 1.503

1rhs 21 27 0.376 1.092

1a2y A:55 A:61 0.231 1.694

1cvl 15 21 0.334 1.019

1thw 18 25 0.17 1.111

1gof 606 613 0.225 1.797

1ppn 191 198 0.336 1.121

1a3c 92 99 0.156 1.253

1fus 31 39 0.435 1.761

1byb 246 254 0.275 2.223

1mla 194 202 0.227 1.716

1noa 99 107 0.47 1.011

1wer 942 950 0.522 1.452

1ixh 84 93 0.195 1.36

1dad 42 52 0.702 1.62

1fus 28 38 0.302 1.69

1a2p A:76 A:86 0.413 1.63

1arb 74 85 0.599 1.45

153L 98 109 0.409 1.56

2ayh 21 32 0.807 1.24

1poa 79 83 1.32 0.311

Figure 4. The 1poa (79:83) loop has several unusual features: it is
solvated and flexible having only polar residues and two consecutive
glycines, it has a buried asparagine residue that makes two internal
hydrogen bonds (represented by dashed lines), and it is flanked by two
disulfide bonds near its ends (yellow bars).
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Zhu et al. Table 2 compares the sampling results. For comparison
convenience, in Table 2, as Zhu et al. does, we also use super-
imposed rmsd instead of regular rmsd. The POS method results
in significantly lower superimposed rmsd compared to Zhu et al.
In 9 targets, including 1ojq (A167:A179), 1ock (A43:A55), 1bhe
(121:133), 1cnv (110:122), 2hlc (A:91:A103), 1ako (203:215),
1g8f (A72:A84), 1f46 (A64:A76), and 1jp4 (A153:A165), POS
can produce models within 1 A resolution, while Zhu et al. has
sampling results over 1 A or more.
There are three targets, 1eok (A147:A159), 1hxh (A87:A99),

and 1qqp (2_161:2_173), where the POSmethod is significantly
worse compared to Zhu et al’s approach. Our further analysis
finds that native loop 1eok (A147:A159) interacts with two sul-
fate ions and an asymmetric unit (Figure 5). Native loops 1hxh
(A87:A99) and 1qqp (2_161:2_173) deeply interact with ex-
ternal chains, as shown in Figure 6. Because the scoring functions
we use in the POS method make no assumption of interactions

with ligands, other asymmetric units, or external chains, the
native or native-like loops are not scored well in DFIRE, Triplet,
Rosetta, or combination of these scoring functions. As a result,
the native-like conformations in these targets are not present in
the Pareto optimal front in the function space of these scoring
functions, and thereby the POSmethod has a high chance tomiss
those close to the native.
3.2. All-Atom Prediction Accuracy. To identify the models

with best quality within the model set, we use our recently
developed the POC method27 for model ranking. In POC rank-
ing, we evaluate models with all-atom scoring functions, includ-
ing Rosetta, DOPE,DDFIRE, I-TASSER, andOPLS-AA/SGB as
well as Triplet, identify the models at the Pareto optimal front,
and then rank them based on the fuzzy dominance relationship to
the rest of the models in the model set. Table 3 lists the average
rmsd of top-ranked model as well as the best top-5-ranked model
in the POSmodel and Jacobson’s decoy sets. One can notice that
in short, medium, and long loop targets, there is 0.05∼ 0.2 A shift
to the native in themodel set generated by the POSmethod com-
pared with Jacobson’s decoy set. This is due to the fact that, in
quite a few targets such as those listed in Table 1, the POS model
set contains models with significantly higher resolution than
those in Jacobson’s decoy set. These models are identified as top
models in the POC ranking process. Correspondingly, the POS
method also leads to improved percentages of top-ranked and
top-5-ranked models with rmsd less than 1 A.

4. DISCUSSION

4.1. Pareto Optimal Front. Various methods have been
developed to take advantage of multiple scoring functions to
improve protein modeling accuracy. One approach is to combine
models generated by sampling guided by different scoring func-
tions. For example, Fujitsuka et al.35 mixed models generated by
SimFold and Rosetta separately and obtained higher prediction
success rate than individual predictions.
We use a conceptual scenario illustrating a function space of

two scoring functions S1 and S2, shown in Figure 7, to compare
the POS and the sampling of individual scoring functions. Suc-
cessfully sampling an individual scoring function typically leads
to clustered solutions near its correspondent global minimum,
as shown in Figure 7. However, some Pareto optimal solutions

Table 2. Sampling Results Comparison in 13-Residue Tar-
gets Listed in Zhu et al.

target RES: start RES: end

POS results in

superimposed

rmsd (A)

Zhu’s results in

superimposed

rmsd (A)

1ojq A:167 A:179 0.59 4.06

1dys A:290 A:302 0.30 0.28

1dpg A:352 A:364 1.08 1.27

1xyz A:645 A:657 0.20 0.36

1eok A:147 A:159 1.38 0.37

1ock A:43 A:55 0.87 2.90

1hnj A:191 A:203 1.76 3.11

1iir A:197 A:209 0.13 0.21

1h4a X:19 X:31 0.24 0.26

1bkp A:51 A:63 0.25 0.83

1hxh A:87 A:99 2.33 0.81

1nln A:26 A:38 0.38 0.71

1bhe 121 133 0.65 2.45

1cnv 110 122 0.45 1.03

1gpi A:308 A:320 0.27 0.70

2ptd 136 148 0.54 0.46

1lki 62 74 0.35 0.36

1d0c A:280 A:292 0.26 0.30

1krh A:131 A:143 0.41 0.72

2hlc A:91 A:103 0.49 3.28

1ako 203 215 0.49 1.07

1ed8 A:67 A:79 0.06 0.26

1mo9 A:107 A:119 0.66 0.76

1g8f A:72 A:84 0.42 1.41

1f46 A:64 A:76 0.51 1.27

1arb 182 194 0.67 0.85

1a8d 155 167 0.62 0.33

1kbl A:793 A:805 0.62 0.48

1jp4 A:153 A:165 0.50 3.43

1l8a A:691 A:703 0.54 0.25

1m8s A:68 A:80 0.39 0.45

1qsl A:389 A:401 1.01 3.61

1qqp 2:161 2:173 1.36 0.38

average 0.63 1.18

Figure 5. Loop (red) in 1eok (A147:A159) interacts with sulfate ions
and an asymmetric unit (green) in the unit cell.
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compromised between S1 and S2 will likely be ignored by the
sampling process due to their higher scores compared to those
near the global minimum. In contrast, POS intends to explore
not only solutions near the respective global minima of individual
scoring functions, but also the other Pareto optimal solutions in
the multiple scoring function space.
A more popular approach is to obtain a consensus scoring

function by combining multiple scores via machine learning
approaches. To name a few examples, Qiu et al.28 used support
vector regression (SVR) to combine various terms into a consensus

scoring function to rank protein models. Gao et al.29 combined
independent latent servers by reducing server correlation, which
achieved significant accuracy improvement in contact predic-
tion. We hereby compare POS with a consensus scoring function
generated by the weighted-sum approach to theoretically show
that certain Pareto optimal solutions may be unreachable in a
weighted-sum consensus scoring function.
In the weighted-sum approach, weights are assigned to various

scoring functions, and a consensus scoring function is built by
linearly combining the weighted score terms. Figure 8 shows a
conceptual scenario of a nonconvex scoring function space of
two scoring functions S1 and S2. When a set of weights are se-
lected, a contour line is formed, and the minimum solution of the
weighted-sum function corresponds to a solution on the Pareto
optimal front, which is a tangent point of the contour line and the
feasible solution space. However, there exists no contour line that
can produce a tangent point with the feasible solution space in
the region BC. This is because before a tangent point is reached

Figure 6. Loops (red) in 1hxh (A87:A99) and 1qqp (2_161:2_173)
interact with external chains (blue).

Table 3. Prediction Accuracy Comparison on 4�12-Residue Targets in Jacobson’s Decoy Set (JDS) and Model Set Generated by
the POS Method

short (4�6 residues) medium (7�9 residues) long (10�12 residues)

average rmsd (A) of top-ranked models POS 0.325 0.580 0.864

JDS 0.372 0.655 1.076

average rmsd (A) of best top-5-ranked models POS 0.241 0.408 0.745

JDS 0.311 0.513 0.904

percentage of top-ranked model with rmsd <1 A POS 96.8% 84.1% 72.2%

JDS 92.7% 81.1% 61.1%

percentage of best top-5-ranked model with rmsd <1 A POS 99.2% 91.5% 75.9%

JDS 95.9% 89.1% 70.4%

Figure 7. Sampling individual scoring functions will likely ignore some
Pareto optimal solutions. Sampling individual scoring functions typically
leads to clustered solutions near the corresponding global minima
(green in S1 and blue in S2) and ignores some other Pareto optimal
solutions (red).
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in BC, the contour line becomes a tangent at another point at AB or
CD,which yields a lowerweighted-sum function value. Inotherwords,
in weighted-sum function optimization, solutions in AB or CDwill
attract the optimization process to drive away from solutions in
BC. Even if nonlinear combination is used to integrate various
score terms, some regions in the Pareto optimal front may still be
unreachable. Compared to a consensus scoring function combin-
ing multiple scores, the POSmethod can explore solutions in both
concave and convex Pareto optimal fronts, which can potentially
lead to broader exploration of the loop conformation space.
Nonconvex Pareto optimal front is common in practical prob-

lems involving multiple scoring functions.50 Nonconvexity in
scoring functions and/or nonconvexity in feasible solution re-
gion can lead to formation of nonconvex Pareto optimal front,36

although this is not a sufficient condition. Proteins are generally
thought to have a rough, funnel-like folding energy landscape
with many deep local minima.52 Thus, scoring functions approx-
imating the protein energy are clearly nonconvex. Moreover, the
Ramachandran plots suggest that certain torsion angles combi-
nations in protein conformations are infeasible, and the feasible
solution regions are often nonconvex.51 As a result, the Pareto
optimal front formed by multiple scoring functions can poten-
tially and likely has nonconvex regions.
4.2. Selection of Scoring Functions.The selection of scoring

functions is important in the POS method. We select the scoring
functions for loop conformation sampling based on the following
three criteria: First of all, the scoring functions selected should
have certain accuracy. A poor scoring function may complicate
the sampling process and bring erroneous models into the final
solution set, although it will not prevent goodmodels from being
included in the final solution set when good scoring functions are
present. The three scoring functions we selected in POS, Rosetta,
DFIRE, and Triplet, have demonstrated their accuracy in loop
modeling, selection, and/or filtering.15,20,26,34,37 Second, the
scoring functions selected should exhibit low correlation. Incor-
porating additional highly correlated scoring functions into the
POS scheme contributes little to sampling but increases the
overall computational time in sampling, because scoring function
calculation is usually costly. Table 4 shows the average intraclass
correlation coefficient (ICC)55 of pairwise Rosetta, DFIRE, and

Triplet in targets listed in the Jacobson’s decoy set. One can find
that Rosetta�DFIRE has stronger correlation than Rosetta�
Triplet and DFIRE�Triplet. This is because Triplet is scoring
function in torsion space while no other atom�atom interactions
are taken into consideration. Moreover, the scoring functions
have stronger correlations in short targets than long ones. After
all, the overall correlation among these scoring functions is low. It
is important to notice that although having low overall correla-
tion, the selected scoring functions likely agree on the good
models with reasonable structures by yielding low scores due to
their reasonably good accuracy. Figure 9 shows an example in
1nwp (A84:A91), where Rosetta and DFIRE have relatively low
overall correlation (ICC = 0.165) (inconsistency particularly in
poor models) but strong agreement models in native-like models.
Finally, the number of scoring functions should be limited. The
number of scoring functions strongly influences the perfor-
mance of population-based multiscoring functions optimiza-
tion/sampling methods.53 This is due to the fact that as the
number of scoring functions increases, the possible solutions at
the Pareto optimal front generally increase exponentially—as a
result, sampling the solutions at the Pareto optimal front
requires significantly larger population and more computa-
tional times to reach convergence.
The typical computational time for our serial program to

model a 12-residue loop, including sampling, local optimization,
and selection, ranges from 4 to 20 h on an Intel Xeon 2.13 GHz
processor. Given the computational results shown in session 4,
we consider our selection of scoring functions effective.

Figure 8. Scenario of a nonconvex Pareto optimal front where a
weighted-sum approach will fail to find some Pareto optimal solutions.

Table 4. Average ICC (two way, consistency) in Measuring
Correlation between Pair-Wise Scoring Functions

average ICC

Rosetta�
DFIRE

Rosetta�
Triplet

DFIRE�
Triplet

short (4�6 residues) 0.232 0.004 0.011

medium (7�9 residues) 0.186 0.003 0.011

long (10�12 residues) 0.149 0.001 0.009

Figure 9. Correlation between Rosetta and DFIRE on models in 1nwp
(A84:A91).



1665 dx.doi.org/10.1021/ci200143u |J. Chem. Inf. Model. 2011, 51, 1656–1666

Journal of Chemical Information and Modeling ARTICLE

5. CONCLUSIONS

By sampling the diversified conformations in the function
space composed of Rosetta, DFIRE, and Triplet, our newly de-
veloped POS method is shown to be effective in exploring the
loop conformation space. Theoretical analyses also prove that
sampling the solution near the Pareto optimal front can lead to
potentially broader exploration of the loop conformation space
compared to sampling individual scoring functions or a consensus
function. Consequently, the POSmethod produces effectivemodel
sets covering near-native conformations in targets in Jacobson’s
decoy set as well as those listed in Zhu’s paper. As a result, the
effective sampling directly leads to prediction resolution im-
provement in the top-ranked and top-5-ranked all-atom models.

One of the minor disadvantages of the POSmethod is its com-
putational cost compared to sampling a single scoring function,
where evaluations of multiple scoring functions are needed. Scor-
ing function evaluation is usually the most costly component in a
protein modeling program. However, the computations of multi-
ple scoring functions are independent, which can be easily paral-
lelized onmodern high-performance computing platforms. More
interestingly, recent study by Handl et al.32 also shows that
optimizing multiple energy function components can even help
reach the global energyminima in protein structure prediction by
reducing the number of local minima as well as the local minima
escaping time.

Our future research directions include incorporating side chain
atoms into sampling and extending our Triplet scoring function by
considering χ angles starting from χ1. This may further enhance
the accuracy of loop models using the POS method. We are also
interested in applying the POS method to other protein modeling
applications, such as protein folding, protein�ligand docking, and
protein�protein interactions.
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