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ABSTRACT: We report a new approach of using statistical context-based scores as
encoded features to train neural networks to achieve secondary structure prediction
accuracy improvement. The context-based scores are pseudo-potentials derived by
evaluating statistical, high-order inter-residue interactions, which estimate the
favorability of a residue adopting certain secondary structure conformation within
its amino acid environment. Encoding these context-based scores as important training
and prediction features provides a way to address a long-standing difficulty in neural
network-based secondary structure predictions of taking interdependency among
secondary structures of neighboring residues into account. Our computational results
have shown that the context-based scores are effective features to enhance the
prediction accuracy of secondary structure predictions. An overall 7-fold cross-
validated Q3 accuracy of 82.74% and Segment Overlap Accuracy (SOV) accuracy of
86.25% are achieved on a set of more than 7987 protein chains with, at most, 25%
sequence identity. The Q3 prediction accuracy on benchmarks of CB513, Manesh215, Carugo338, as well as CASP9 protein
chains is higher than popularly used secondary structure prediction servers, including Psipred, Profphd, Jpred, Porter (ab initio),
and Netsurf. More significant improvement is observed in the SOV accuracy, where more than 4% enhancement is observed,
compared to the server with the best SOV accuracy. A Q8 accuracy of >70% (71.5%) is also found in eight-state secondary
structure prediction. The majority of the Q3 accuracy improvement is contributed from correctly identifying β-sheets and α-
helices. When the context-based scores are incorporated, there are 15.5% more residues predicted with >90% confidence. These
high-confidence predictions usually have a rather high accuracy (averagely ∼95%). The three- and eight-state prediction servers
(SCORPION) implementing our methods are available online.

■ INTRODUCTION
Reliably and accurately predicting three-dimensional structures
of proteins from their sequences is one of the grand
computational challenges with broad scientific and economic
impacts. An important intermediate step toward solving the
protein structure modeling problem is to correctly predict the
secondary structure. This is due to the fact that proteins form
local conformations such as helices and sheets: the correct
prediction of protein secondary structures will significantly
reduce the degrees of freedom in protein tertiary structure
modeling and therefore reduce the difficulty of obtaining high-
resolution three-dimensional (3D) models.1

Historically, the improvement of secondary structure
prediction benefits from the incorporation of new features/
information that can separate among secondary structure classes.
The early methods of secondary structure prediction2,3 are based
on the statistical analysis of the capability of single amino acids in
forming various secondary structure elements, whose Q3
prediction accuracy (percentage of residues predicted correctly
in one of the three states: helix, strand, and coil) usually does not
exceed 60%.4 The later generation of secondary structure
prediction methods takes advantage of the segment information
consisting of 3−51 adjacent residues, which passes 60% Q3
prediction accuracy.5 The most substantial improvement is due
to the use of evolutionary information obtained from the
divergence proteins in the same structural family, where a Q3

prediction accuracy of >70% is achieved.6,7 Nowadays, with the
advancement of machine learning algorithms including Bayesian
statistics, neural networks, k-nearest neighbors, hidden Markov
models, support vector machines, and random field, dramatic
increase in the number of solved protein structures available in
protein data banks, and incorporation of amino acid property
features such as physicochemical propensities, solvent accessi-
bilities, etc., in the training and prediction process, quite a few
current prediction methods report Q3 accuracies from ∼76% to
∼80%.8−16
Unlike three-state secondary structure prediction, very few

methods have been developed for the eight-state prediction, to
the best of our knowledge. SSpro8 is an eight-state secondary
structure prediction method developed by Pollastri et al.13 with a
Q8 accuracy of 62%−63%. A more recent prediction method
(RaptorXss8) developed byWang et al.17 reported aQ8 accuracy
of 67.9% through the use of the Conditional Neural Field (CNF)
model.
Theoretically, a prediction accuracy of 88%−90% is usually

considered as the upper bound of secondary structure
prediction.4 This is because the secondary structure assignments
based on crystal structure have ∼10% errors themselves, as
inferred from differences between X-ray structures and nuclear
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magnetic resonance (NMR) models of the same protein and
from inconsistency of secondary structure assignments by
different methods of different parameters (e.g., DSSP18 and
STRIDE19). However, no significant forward steps have been
made in the last 10 years to get closer to the upper bound of the
prediction. Even obtaining improvements of fractions of a
percent has become difficult. Unless homologue templates are
available,20 the Q3 accuracy of secondary structure prediction is
stagnated between 76% and 80%. Moreover, many of the
reported accuracies from different prediction methods are not
cross-validated and/or obtained from several small datasets. On
the other hand, a variety of computational applications aimed at
modeling protein structures and understanding protein functions
strongly rely on the accurate prediction of secondary structures.
As a basis for tertiary structure prediction, reducing the percent
of inaccuracy would be an enormous improvement in efficiency,
because the search space for finding a tertiary structure goes up
superlinearly with the fraction of inaccuracy in the secondary
structure prediction. Continuous improvement of secondary
structure prediction accuracy toward the theoretical upper bound
will substantially benefit these applications.
It is well-known that, in machine learning, extracting and

selecting “good” features can significantly enhance the prediction
performance of a predictor. Probably, the most effective features
are the secondary structures of its neighbors to predict the
secondary structure of a residue. For example, if both adjacent
neighbors are helices, the middle residue is most likely to be a
helix. Vice versa, if the adjacent positions of a residue are not
helices, it is impossible for this middle residue to adopt a helix as
its secondary structure. In fact, our computational results shows
that, if the true secondary structures of neighboring residues are
encoded, machine learning using a simple feedforward neural
network can easily lead to a prediction accuracy of >90%.
Unfortunately, using the true secondary structures as features is
not feasible, since they cannot be known a priori. However, this
inspires us to examine whether the favorability of a residue
adopting a certain secondary structure can be also an effective
feature. The statistical scores measuring the favorability of a
residue adopting a certain secondary structure within its amino
acid environment can be obtained from the experimentally
determined protein structures in the PDB.21 Encoding these
statistical scores as features provides an approach to address a
long-standing difficulty in neural network of taking interdepend-
ency among secondary structures of neighboring residues into
account.
In this paper, we extract context-based statistical scores to

measure favorability of a residue adopting secondary structure
from a large training sample set. The fundamental idea is based
on the fact that the formation of secondary structure exhibit
strong local dependency, particularly, residues in a protein
sequence are strongly correlated in different sequence positions
in coils, β-sheets, 310-helices, α-helices, and π-helices. The
context-based statistics indicate the favorability of a residue
adopting a secondary structure conformation in the presence of
its neighbors in sequence. We derive statistics for singlets,
doublets, and triplets in a sequence window from experimentally
determined structures in the PDB. Scores that measure the
pseudo-potentials of a residue adopting a certain secondary
structure then are calculated using the potentials of a mean force
approach. These scores are incorporated as sequence-structure
features together with the Position Specific Scoring Matrix
(PSSM) data to train the secondary structure prediction neural
networks. Our server implementing this method is called

SCORPION (secondary structure prediction). We apply our
approach to predict secondary structures in both three-state and
eight-state predictions. We test our method on several
commonly used benchmarks for secondary structure prediction,
including CB513,22 Manesh215,23 and Carugo338,24 as well as
the CASP9 targets.25 We compare our results with a set of
popular secondary structure prediction methods including
Porter (ab initio),8 Psipred,9 PROFphd,10 Netsurfp,11 and
Jpred12 for three-state predictions, and with RaptorXss817 for
eight-state predictions. The prediction accuracy of our method is
further analyzed in this paper.

■ MATERIALS AND METHODS

Datasets. We use the CullPDB data set (Cull16633)
generated by the PISCES server26 on October 21, 2011 to
collect the triplet samples to produce the context-based statistics.
Cull16633 contains 16 633 chains with a maximum pairwise
sequence identity of 50%, a resolution of 3.0 Å, and an R-factor of
1.0. Our recent results have shown that the statistics obtained
from the cull library with a maximum sequence identity of 50%
yields the optimal accuracy (31).
For neural network training, we use the Cull7987 dataset,

which includes 7987 chains with a pairwise sequence identity of,
at the most, 25%, a resolution cutoff of 3.0 Å, and an R-factor
cutoff of 1.0. We use the PSI-BLAST program27 to generate the
PSSM data. Short chains with less than 40 residues are
eliminated, since the PSI-BLAST program is usually unable to
generate profiles for very short sequences. Very large chains
whose lengths are greater than 1000 residues also are removed.
We also exclude residues with undetermined structures from the
training set.
Popular public benchmarks for protein secondary structure

prediction, including CB513,22 Manesh215,23 and Carugo33824

and the recent CASP9 targets25 are used to validate our method.
We use the Q3 scores (for three-state prediction), Q8 scores (for
eight-state prediction), and SOV (segment overlap28) scores to
measure the accuracy of secondary structure predictions.
The eight-state assignments (G = 310-helix, H = α-helix, I = π-

helix, E = extended strand, B = isolated bridge, S = bend, T = turn,
and C = coil) of the Cull16633 and Cull7986 protein datasets, as
well as the benchmark protein sets, are determined by the DSSP
program. In eight-state prediction, SCORPION directly predicts
the DSSP eight states of each residue. In three-state prediction,
SCORPION predicts the three dominant secondary structure
states by grouping (G, H, I) into helices (H), (E, B) into sheets
(E), and (T, S, C) into coils (C), which is consistent with most
secondary structure prediction methods.

Context-Based Statistics. The early studies in protein
secondary structure show that the types of nearby neighboring
residues play a predominant role to the secondary structure
conformation that a residue adopts. In particular, the formation
of interactions within coils beyond nearest neighbors, in most
cases, does not appear to contribute a statistically significant
amount in determining coil structure.29 Residues in contacting
parallel or antiparallel β-sheets are connected by hydrogen bonds
in alternative positions. The hydrogen bonds between residues at
positions i and i+3, i and i+4, and i and i+5 lead to the formation
of 3−10 helices, α-helices, and π-helices, respectively. Therefore,
the context-based statistics by capturing the correlation between
residues provide important information in predicting secondary
structure. Actually, the early GOR30 method employed
information theory by taking advantage of the context-based
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pairwise interaction statistics and achieved initial success in
secondary structure prediction.
Figure 1 shows the probability of alanine as the middle residue

of a triplet with neighboring residues at 1−5 positions away when
adopting helix as secondary structure. One can find that, as
expected, the nearest neighbors have the strongest influence to
the middle alanine and the further the neighbors are away, the
weaker the influence. However, even residues five positions away
have non-negligible influence on the middle alanine, although
much weaker than that of the adjacent residues.
The recent increasing number of determined structures in

protein databanks has made the derivation of context-based
statistics feasible by characterizing high-order inter-residue
interactions. In this work, we extract statistics of singlets (Ri),
doublets (RiRi+k), and triplets (RiRi+k1Ri+k2) residues at different

relative positions in protein sequences, which is further used to
generate pseudo-potentials to be incorporated as new features in
neural network training and prediction. The statistics of singlets,
doublets, and triplets represent estimations of the probabilities of
residues adopting a specific secondary structure type when none,
one, or two of their neighbors in context are taken into
consideration, respectively.
The observed probabilities of the ith residue Ri in a singlet

(Ri), doublet (RiRi+k), and triplet (RiRi+k1Ri+k2) adopting a

specific secondary structure Ci
31 are respectively estimated by

| =P
N

N
(C R )

(C , R )
(R )i i

i i

i
obs

obs

obs

Figure 1. Probability of alanine as the middle residue of a triplet with neighboring residues 1−5 positions away when adopting α-helix as a secondary
structure (the symbols “x”, “y”, and “-” represent the left neighbor, right neighbor, and gap, respectively). The neighboring residues are ordered by their
probability of forming α-helix. The nearest neighbors have the strongest influences; however, neighbors 5 positions away still have certain non-negligible
influences on the secondary structure conformation of the middle alanine.

Journal of Chemical Information and Modeling Article

dx.doi.org/10.1021/ci400647u | J. Chem. Inf. Model. 2014, 54, 992−1002994



| =+
+

+
P

N
N

(C R R )
(C , R R )

(R R )i i i k
i i i k

i i k
obs

obs

obs

and

| =+ +
+ +

+ +
P

N

N
(C R R R )

(C , R R R )

(R R R )i i k i k
i i i k i k

i i k i k
obs

obs

obs
1 2

1 2

1 2

Here, Nobs(Ci, Ri), Nobs(Ci, RiRi+k), and Nobs(Ci, RiRi+k1Ri+k2) are
the observed number of singlets (Ri), doublets (RiRi+k), and
triplets (RiRi+k1Ri+k2) while Nobs(Ci, Ri), Nobs(Ci, RiRi+k), and

Nobs(Ci, RiRi+k1Ri+k2) are those of singlets (Ri), doublets (RiRi+k),

and triplets (RiRi+k1Ri+k2) with Ri adopting conformation Ci (H,
E, C for three-state prediction and G, H, I, E, B, T, S, C for eight-
state prediction) in the training set. However, there may not be
enough samples for doublets and triplets with less popular amino
acids in the training set to obtain statistically meaningful results.
We remedy this problem by taking advantage of the PSSM values
generated by multiple sequence alignment by summing the
frequency weights at each residue position. The frequency
weights are derived from the PSSM values at each residue
position in a protein sequence, which are generated by PSI-
BLAST, using three iterations of searching with an e-value of
0.001 against the NCBI nr database of protein sequences. These
observed numbers are then calculated as

∑ ∑=N R( ) PSSM (R )i
j

j iobs
Protein

∑ ∑= ×+ +N (R R ) PSSM (R ) PSSM (R )i i k
j

j i j i kobs
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×

+ + +
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j
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i i i k i k
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j i j i k j i k
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Protein C Cj i

1 2
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where PSSMj(Ri) is the PSSM frequency for residue type Ri at
position j of a protein sequence.

Context-Dependent Pseudo-potentials. The context-
dependent pseudo-potentials are generated based on Sippl’s
potentials of mean force method.32 According to the inverse-
Boltzmann theorem, we calculate the mean-force potential
Usinglet(Ri,Ci) for a singlet residue Ri adopting a secondary
structure Ci:

= −
|
|

⎛
⎝⎜

⎞
⎠⎟U RT

P
P

(C , R ) ln
(C R )
(C R )i i

i i

i i
singlet

obs

ref

whereR is the gas constant,T the temperature, and Pref(Ci|Ri) the
referenced probability. In our method, we employ the condi-
tional probability approach described in Samudrala and Moult33

to estimate the referenced probability by
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Similarly, the mean-force potentials Usinglet(Ri,Ci) and
Usinglet(Ri,Ci) for residues adopting a secondary structure are
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respectively, with corresponding referenced probabilities given as
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Then, the context-dependent pseudo-potential for Ri to adopt
secondary structure conformation Ci under its amino acid
environment is

∑

∑
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+
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These context-dependent pseudo-potentials are used as
context-based scores to be encoded in neural network training
and prediction.

Neural Networks. Our SCORPION server incorporates
three phases of feed-forward neural network training. The first
and second phases are sequence-to-structure and structure-to-
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structure training, respectively, while the third phase is used to
refine the prediction results.
In the sequence-to-structure training, a sliding window of 15

residues is selected, where each neural network is trained to
predict the class of that residue in the middle of the window. Each
residue is represented by 20 PSSM values and 1 extra value to
indicate C- or N-terminals overlap. When the context-based
scores are incorporated, additional encoding values (3 for three-
state prediction and 8 for eight-state prediction) for the each
residue are needed. Overall, 360 and 435 input values are used to
encode each residue in three- and eight-state prediction,
respectively. After sequence-to-structure training, the next
phase is to carry out a structure-to-structure training to eliminate
impossible secondary structure predictions. The last phase
employs a manner similar to the first one, but setting some
context-based scores to “absolute favorable” if the results from
structure-to-structure prediction indicates that the probability of

a residue adopting a certain secondary structure is >90%. Figure 2

illustrates the neural network encoding and architecture for three

phases of training.
7-Fold Cross-Validation. Here, 7-fold cross validation has

been performed on Cull7987. We randomly divide the chains in

Cull7987 set into seven subsets with approximately the same

number of chains. At each fold, five subsets are used for training,

one for testing, and one for validation. To ensure complete

separation of the training set and testing set for each fold, we

generate a set of scores only based on the sequences in the five

training subsets and then encode it in training. Hence, totally

seven sets of context-based scores are generated for 7-fold cross

validation. The overall prediction accuracy is calculated as the

average accuracy of the 7-fold predictions.

Figure 2. Three phases of neural network (architecture and encoding) for three-state prediction in SCORPION.
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■ RESULTS
Three-State Prediction. Table 1 compares the 7-fold cross-

validation Q3 and SOV3 accuracies of neural networks for three-

state prediction with context-based score encoding (PSSM +
context-based score) and without context-based score encoding
(PSSM Only). Both neural network trainings go through the
same training and cross-validation procedure. When the context-
based scores are incorporated, both Q3 and SOV3 accuracy
enhancements are observed in all three secondary structure
classes. The overall cross-validated Q3 accuracy is 82.74%, which
is higher than the reported accuracies (∼80%) in the popular
secondary structure prediction servers.8−12 It is important to
notice that the most significant improvement in accuracy
(4.02%) is found in β-sheets. This is particularly encouraging,
because β-sheets are typically harder to predict than helices due
to global interactions. 2.55% and 1.47% accuracy improvement
are also observed in helices and coils, respectively. Because of the
fact that residues in sheets and helices yield stronger correlation
to the neighboring residues than those in coils, the context-based
scores are more effective on sheets and helices predictions. The
overall 7-fold cross-validated SOV3 accuracy reaches 86.25%,
which is 2.39% higher than that of using only PSSM encoding.
Table 2 shows the Q3 accuracy and the composition frequency

of each amino acid type. The prediction accuracy for cysteine is
the lowest, mainly due to its lowest composition frequency in
protein sequences. Moreover, a cysteine residue may form a
disulfide bond with another cysteine residue, which complicates
the prediction of their secondary structures.
Tables 3 and 4 compare the Q3 and SOV3 accuracies between

our method and the popularly used secondary structure
prediction servers, including Porter (ab initio), PsiPred,
ProfPhD, Netsurfp, and Jpred on benchmarks of CB513,
CASP9, Manesh215, and Carugo338. To enforce fairness
comparison, we generate context-based scores by removing all
sequences with sequence identities of 25% or higher, relative to
the sequences in benchmark from Cull16633, and all
homologues with a sequence identity of higher than 25%,
relative to the chains presented in these benchmarks are excluded
from Cull7987 when training neural networks. It is interesting to
notice that our prediction method has significantly higher
accuracy in both α-helices and β-sheets than the other servers,
with improvements of more than 5% inmost cases. However, as a
tradeoff, the accuracy of coils is ∼5% less compared to PsiPred,
∼3.6% less compared to Netsurfp, and ∼2% less compared to
JPred. After all, compared to PsiPred with the highest Q3
accuracy, our method’s improvement on these benchmarks is

Table 1. 7-Fold Cross-ValidationQ3 and SOV3Accuracies for
Three-State Prediction in SCORPION

Accuracy (%)

PSSM only PSSM+context-based score

QH 84.74 87.29
QE 72.72 76.74
QC 80.53 82.00
Q3 80.31 82.74

SOVH 87.85 90.34
SOVE 81.87 84.13
SOVC 81.19 83.31
SOV3 83.86 86.25

Table 2. Q3 Accuracy for Each Amino Acid Type in
SCORPION

amino acid, AA composition frequency (%) Q3 accuracy (%)

A 8.11 83.59
R 5.16 81.96
N 4.33 81.96
D 5.92 83.67
C 1.26 76.79
Q 3.88 83.27
E 6.88 83.03
G 6.96 83.56
H 2.33 81.20
I 5.85 84.29
L 9.64 83.74
K 5.82 82.07
M 1.62 82.69
F 4.19 80.65
P 4.52 84.31
S 6.03 80.72
T 5.45 80.92
W 1.42 80.02
Y 3.62 79.96
V 7.00 83.70

Table 3. Comparison of Q3 Accuracy between SCORPION
and Other Popularly Used Secondary Structure Prediction
Methods, Including Porter (Ab Initio), PsiPred, ProfPHD,
NetSurfp, and JPred on Benchmarks of CB513, CASP9,
Manesh215, and Carugo338

Q3 Accuracy (%)

CB513 CASP9 Manesh215 Carugo338

Porter (ab initio) Q3 77.53 78.65 77.99 77.5
QH 81.30 85.45 81.72 80.67
QE 66.18 67.4 66.73 66.21
QC 80.49 78.75 80.57 81.1

Psipred Q3 80.19 81.35 80.67 80.06
QH 79.28 83.32 78.29 77.09
QE 68.49 69.68 69.43 67.96
QC 87.11 85.84 88.63 88.87

Profphd Q3 76.52 76.91 76.77 76.47
QH 80.06 84.41 80.02 78.76
QE 69.18 65.53 68.78 68.82
QC 77.54 76.48 78.06 78.8

Netsurfp Q3 77.88 79.35 78.7 78.24
QH 77.21 82.46 77.39 76.2
QE 64.36 64.94 66.17 64.65
QC 85.56 84.27 86.39 87.1

JPred Q3 78.72 79.24 79.32 78.67
QH 78.02 79.29 77.72 76.34
QE 69.04 74.05 71.48 69.37
QC 84.39 82.09 84.81 85.49

C3-SCORPION Q3 80.69 83.02 82.66 81.96
QH 85.27 88.38 86.22 85.51
QE 72.69 77.66 75.97 74.07
QC 81.15 81.44 82.95 83.43
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from 0.5% to 2%. Although an accuracy improvement from 0.5%
to 2% over PsiPred does not seem very attractive, it is important
to notice an improvement in SOV3 accuracy of more than 5%,
compared to PsiPred. Moreover, the SOV3 accuracy of our
server is 4.25% higher than Porter (ab initio) and is more than 6%
higher compared to Netsurfp, JPred, or PsiPred. This is because
the context-based scores incorporating secondary structure
information of neighboring residues enhance the coverage of
the secondary structure segments.
Eight-State Prediction. The overall Q8 7-fold cross-

validated accuracy on the Cull7987 dataset in SCORPION is
71.5%, where the accuracies of predicting 310-helix (G), α-helix
(H), π-helix (I), extended strand (E), isolated bridge (B), bend
(S), turn (T), and coil (C) are 22.7%, 92.4%, 0%, 82.9%, 2.4%,
22.3%, 51.6%, and 66.1%, respectively. The accuracy comparison
with prediction without using context-based score encoding is
listed in Table 5. The prediction accuracies of the eight different
secondary structure states vary significantly. In particular, the
prediction accuracy of G, I, B, and S are very low, mainly due to
the fact of their infrequent appearances in protein data banks,
whose distribution is shown in Figure 3. Hence, the eight-state
classification is considered more challenging than the three-state,
because of the extremely unbalanced distribution of the eight-
starctural states and their composition in native protein
structures. As shown in Table 3, when the context-based scores

are incorporated, accuracy enhancements are observed in all
eight secondary structure classes, except for π-helix remaining at
0%. The very small fraction of residues adopting π-helix (0.02%)
structure makes it almost impossible to predict.
To the best of our knowledge, SSpro8 and RaptorXss8 are the

only two reported servers for eight-state secondary structure
prediction. At the time, when this manuscript is written, SSpro8
is not available online; however, RaptorXss8 has demonstrated
higher accuracy than SSpro8 in ref 16. Tables 6 and 7 respectively
compare Q8 and SOV8 accuracies of SCORPION with those of
the RaptorXss8 server on CB513, CASP9, Manesh215, and
Carugo338. Similar to three-state prediction, in order to
guarantee fairness, we generate a new set of context-based
scores by removing all sequences with a sequence identity of 25%
or higher, relative to the sequences in the benchmarks from
Cull16633, and all homologues with a sequence identity of
higher than 25%, relative to the chains presented in the
benchmarks are excluded from Cull7987 when training eight-
state prediction neural networks. SCORPION has a higher
accuracy, in seven states except for π-helix, than RaptorXss8, with
∼2% improvements in Q8 accuracy and ∼3% improvements in
SOV8 accuracy.

■ DISCUSSION
Prediction with High Confidence. The feed-forward

neural networks used in SCORPION provide a confidence
interval to estimate the uncertainty of the prediction of each
residue. When >90% confidence is obtained, the secondary
structure prediction of a residue has rather high accuracy (98%

Table 4. Comparison of SOV3 Accuracy between SCORPION
and Other Popularly Used Secondary Structure Prediction
Servers Including Porter (Ab Initio), PsiPred, ProfPHD,
NetSurfp, and JPred on Benchmarks of CB513, CASP9,
Manesh215, and Carugo338

SOV3 Accuracy (%)

CB513 CASP9 Manesh215 Carugo338

Porter SOV3 80.21 82.41 80.90 80.03
SOVH 84.64 88.36 85.07 84.09
SOVE 76.06 77.24 76.70 76.68
SOVC 78.76 79.87 79.32 78.61

Psipred SOV3 78.91 81.24 79.55 77.63
SOVH 83.61 87.21 84.00 82.40
SOVE 77.35 78.62 78.56 77.15
SOVC 75.80 77.19 75.96 74.03

Profphd SOV3 78.96 79.87 79.62 78.28
SOVH 83.79 86.42 83.59 82.55
SOVE 76.19 74.08 76.52 76.21
SOVC 76.44 77.09 77.64 75.99

Netsurfp SOV3 77.66 79.74 78.92 77.18
SOVH 82.21 86.13 82.86 81.62
SOVE 75.06 75.25 77.02 75.40
SOVC 75.26 76.38 76.31 74.52

JPred SOV3 78.82 81.70 79.63 77.98
SOVH 82.85 83.39 82.88 81.61
SOVE 77.56 82.52 79.62 78.51
SOVC 76.11 79.74 76.63 74.71

C3-SCORPION SOV3 83.98 86.38 85.72 84.45
SOVH 88.71 89.88 89.52 88.37
SOVE 80.64 84.57 82.91 82.12
SOVC 81.84 84.31 83.71 82.57

Table 5. 7-Fold Cross-Validation Accuracy for Eight-State
Prediction in SCORPION

Accuracy (%)

PSSM Only PSSM+Score

QG 19.5 22.7
QH 91.8 92.4
QI 0.0 0.0
QE 82.1 82.9
QB 2.3 2.4
QS 19.4 22.3
QT 49.4 51.6
QC 65.5 66.1

overall 70.3 71.5

Figure 3. Distribution of eight-state secondary structures (310-helices
(G), α-helices (H), π-helices (I), β-sheets (E), β-bridges (B), turns (T),
bends (S), and coils (C)) in Cull16633.

Journal of Chemical Information and Modeling Article

dx.doi.org/10.1021/ci400647u | J. Chem. Inf. Model. 2014, 54, 992−1002998



for helices, 94% for sheets, and 90% for coils in three-state
prediction and 99% for α-helix and 98% for β-sheet in eight-state
prediction). Therefore, if consecutive residues in a helix or sheet
segment are predicted with high confidence, misprediction of
this helix or sheet segment is very unlikely. This is particularly
useful in a variety of applications such as assigning secondary
structures to NMR constraints or Cryo-EM density maps as well
as limiting backbone torsion angle variations to reduce degree of
freedoms in template-free predictions.34

Table 8 compares the total number of residues predicted with
over 90% confidence in CB513, Manesh215, Carugo338, and

CASP in SCORPION with and without context-based score
encoding. Overall, there are 153 073 residues in these four
benchmarks. For neural networks with PSSM-only encoding, the
secondary structures of 60 222 (39.3% of all residues) residues
are predicted with >90% confidence. When context-based scores
are incorporated, the total number of residue secondary structure
predictions with over 90% confidence is enhanced by 15.5%, to
69 537 (45.4% of all residues in benchmarks). Compared to the
neural networks using PSSM only encoding, the numbers of
residues predicted with over 90% confidence increase by 6.7%,
9.9%, and 42.3% in helices, strands, and coils, respectively.

A Three-State Prediction Example. Figure 4 depicts an
example of three-state secondary structure prediction on protein
3NNQ chain A from CASP9 targets. The Q3 accuracy of PSSM-
only neural networks is 83.33%. When context-based score
encoding is incorporated, theQ3 accuracy is thereby improved to
90.35%. The main prediction difference is on the highlighted α-
helix where the PSSM-only neural networks miss. Nevertheless,
the context-based scores of the residues in the highlighted helix
segment, as shown in Table 9, indicate that secondary structure
of helix is highly favorable, which help the neural networks to
identify the major part of this helix.

Analysis of Misclassifications. The majority of the
prediction errors in the set of benchmarks result from the
misclassifications of types E and C (8.34%) and the
misclassification of types H and C (7.98%). The misclassification
of H and E is much less common (∼1.14%).
Table 10 shows the total number of misclassifications on the

benchmark set of CB513, CASP9, Manesh215, and Carugo338.
A significant reduction of misclassifications is observed upon the
incorporation of context-based score encoding in the neural
networks in SCORPION. Misclassifying H to E and E to H has
been reduced by 14.08%, misclassifying H to C and C to H has
been reduced by 8.83%, and the misclassification of E to C and C
to E has been reduced by 5.18%.
We further analyze the misclassifications among helices and

strands in SCORPION. The benchmark set (CB513, Man-
esh215, Carugo338, and CASP9) includes 10 011 helices ranging
in length from 3 to 18 residues and 13 877 strands ranging in
length from 1 to 16 residues. The total number of helices and
strands that are correctly predicted as whole structures using our
method are 4880 and 5467, respectively (the percentages are
48.75% and 39.40%, respectively), leaving the rest of the
predictions with at least one residue misclassification in the

Table 6. Comparison of Q8 Accuracy between SCORPION
and RaptorXss8 on Benchmarks of CB513, CASP9,
Manesh215, and Carugo338

Q8 Accuracy (%)

CB513 CASP9 Manesh215 Carugo338

RaptorXss8 Q8 65.59 69.31 67.69 66.64
QG 17.54 20.58 18.43 19.20
QH 89.96 92.90 90.22 89.91
QI 0.00 0.00 0.00 0.00
QE 77.68 81.64 79.60 79.45
QB 0.09 0.00 0.32 0.44
QS 15.87 18.11 17.80 17.14
QT 48.02 51.45 51.28 50.11
QC 63.29 59.37 63.73 63.36

C8-SCORPION Q8 67.22 71.54 69.71 68.44
QG 21.81 22.46 23.01 22.42
QH 90.95 93.58 91.42 90.55
QI 00.00 0.00 0.00 0.00
QE 80.31 83.95 82.54 81.44
QB 1.43 1.04 1.79 2.22
QS 19.86 23.41 21.99 21.95
QT 49.44 53.87 53.03 52.65
QC 63.54 62.82 64.93 64.69

Table 7. Comparison of SOV8 Accuracy between SCORPION
and RaptorXss8 on Benchmarks of CB513, CASP9,
Manesh215, and Carugo338

SOV8 Accuracy (%)

CB513 CASP9 Manesh215 Carugo338

RaptorXss8 SOV8 64.99 69.84 68.00 66.88
SOVG 20.04 21.27 20.81 21.71
SOVH 88.95 90.71 89.97 89.24
SOVI 0.00 0.00 0.00 0.00
SOVE 82.50 84.81 84.15 84.61
SOVB 0.09 0.00 0.32 0.44
SOVS 17.72 19.74 19.40 18.78
SOVT 50.79 53.92 54.73 53.74
SOVC 55.13 59.61 58.78 58.01

C8-SCORPION SOV8 67.66 73.47 70.79 69.50
SOVG 25.39 26.41 27.23 26.01
SOVH 92.24 93.66 92.80 91.65
SOVI 0.00 0.00 0.00 0.00
SOVE 85.25 88.68 87.05 86.57
SOVB 1.43 1.04 1.78 2.21
SOVS 21.88 25.36 23.70 23.95
SOVT 52.98 56.97 56.71 56.89
SOVC 56.28 64.28 60.69 60.14

Table 8. Total Number of Correct Predictions with >90%
Confidence on Benchmarks of CB513, CASP9, Manesh215,
and Carugo338

Total Number of
Correct Predictions

PSSM
only

PSSM
+score

number of residues predicted as H with 90%
confidence

33 292 35 533

number of residues predicted as E with 90%
confidence

13 298 14 611

number of residues predicted as C with 90%
confidence

13 632 19 393

total number of residues predicted with 90%
confidence

60 222 69 537

(39.3%) (45.4%)
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structure. Table 11 shows a detailed analysis of the
misclassifications in helices and strands in this benchmark set.
Figure 5 shows the length distributions of helices and sheets

when the whole structures are missing from prediction in our
method. The most misclassified helices are 310-helices (all three-
residue helices and a portion of the longer helices) and the most
misclassified sheets are isolated β-bridges (residue size of 1). 310
helices are much rarer in PDB than α-helices, which has a very
low prediction accuracy (∼14%) in the literature.35 Also, most of
the 310 helices are short with three or four consecutive residues.
Similarly, the isolated β-bridges are also rare and short and
probably more importantly, the isolated β-bridges are the results
of global interactions. Generating statistically meaningful
context-based scores to sensitively identify 310 helices and β-

bridges is rather difficult. Therefore, the context-based scores
help but with limited contribution in correctly identifying 310
helices and β-bridges.

Sensitivity to Context-Based Scores Accuracy. The
context-based scores estimate the favorability of a residue
adopting a certain secondary structure conformation within its
amino acid environment. The contribution of the context-based
scores to secondary structure prediction depends on their
accuracy. Figure 6 shows the distribution of the context-based
scores accuracy and the corresponding accuracy improvements
over the PSSM-only predictions in CB513, CASP9, Manesh215,
and Carugo338 benchmarks. When the accuracies are lower than
40%, the context-based scores are close to random and thus their
contributions to secondary structure prediction are marginal.
The more accurate the scores are, the greater in improvements in
accuracy over the PSSM-only predictions are achieved. When the
accuracy of the context-based scores exceeds 80%, the average
accuracy improvement over PSSM-only predictions reaches
2.5%. Unfortunately, the quality of the context-based scores
relies on the statistics of singlets, doublets, and triplets,31 which
are limited by the number of proteins existing in the PDB.
Therefore, it is not often that the context-based scores are highly
accurate and the average of the context-based scores accuracy in
SCORPION training and prediction is ∼60%.

Secondary Structure Prediction and Intrinsically
Disordered Protein Regions. An important application of
secondary structure prediction is to predict intrinsically
disordered protein regions. Disordered proteins typically have

Figure 4. 3-state secondary structure prediction for protein 3NNQ chain A from CASP9 targets.

Table 9. Segment of 3NNQA (82−115)

Context-Based Scores
Structure
Predictions

amino
acid,
AA U(C, ...) U(E, ...) U(H, ...)

PSSM
+score

PSSM
only

true
structure

94 E 1.57 0.73 −1.66 H H H
95 T 3.17 0.43 −3.12 H H H
96 C 0.12 0.37 −0.08 C C C
97 K 5.11 1.01 −5.11 H C H
98 A 1.91 0.88 −2.11 H C H
99 C 5.5 0.58 −5.31 H C H
100 A 0.49 0.5 −0.53 H E H
101 Q 2.18 0.22 −2.22 H E H
102 V 0.91 −0.1 −0.65 C C H
103 N 2.13 0.22 −2.11 C C H
104 A −3.66 0.27 3.68 C C C
105 S −0.51 0.57 0.28 C C C

Table 10. Misclassifications of Secondary Structure States on
Benchmark Sets

misclassification PSSM only PSSM+score

H → E 1864 1717
E → H 2318 1876
H → C 12 997 11 436
C → H 11 550 10 943
E → C 15 125 13 831
C → E 10 383 10 356

Table 11. Detailed Description of Helix and Strand
Misclassifications on the Benchmark Set of CB513, CASP9,
Manesh215, and Carugo338

helix
(%)

strand
(%) description

missed at begin
(only)

5.36 8.28 only the first residue at the beginning
of a structure

missed at middle 15.80 13.89 at least one is misclassified anywhere
between the two ends

missed at end
(only)

11.59 8.87 only the last residue at the end of a
structure

missed at begin and
end (only)

1.70 2.08 misclassified at both ends (2
residues)

missed the whole
structure

16.80 27.48 the whole structure is misclassified
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a low content of secondary structures. In fact, the predicted
secondary structures are often incorporated as important
information in disorder region predictors such as DISOPRED36

and SPINE-D.37 Figure 7 shows an example of the secondary
structures predicted by SCORPION on Thylakoid-soluble
phosphoprotein TSP9,38 which is an intrinsic disordered protein
that reacts to changes in light conditions from the photosynthetic
membrane. The majority of the N-terminal α-helix is predicted
correctly with high confidence (8+), except for two residues at
the end. For the unstructured coils, 85.3% of the 75 residues are
correctly identified while the rest 14.7% are misclassified as
helices or strands but with low prediction confidence (6−).
Coupled with other residue feature predictors such as solvent

accessibility, B-factor, contact, and disulfide bonding state, the
accuracy improvement in secondary structure prediction using
context-based scores has the potential to enhance determination
of intrinsically disordered regions.

Toward the Theoretical Upper Bound. In this paper, we
report a 7-fold cross-validation Q3 accuracy of 82.7% in
SCORPION. To close the gap in Q3 accuracy to 88%−90%
which is the theoretical upper bound of three-state secondary
structure prediction 4our future efforts in SCORPION will
include (1) deriving better context-based scores, particularly for
calculating high-order interactions, (2) obtaining more-precise
PSSM substitution matrices by better multiple sequence
alignment algorithms on increasingly large sequence databases,
and (3) developing advanced machine learning algorithms that
can capture residue−residue interactions in longer range and
handle an increasingly large number of known protein structures.
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Figure 5. Histograms of the numbers of (A) misclassified helices and (B) strands in SCORPION, based on their lengths.

Figure 6. Distribution of context-based scores accuracy and its
correlation with accuracy improvement over PSSM only prediction in
CB513, CASP9,Manesh215, and Carugo338 benchmarks. The accuracy
of context-based scores is measured by calculating the percentage of
residues whose lowest secondary structure conformation (H, E, or C)
scores agree with the DSSP assignments in a protein sequence.

Figure 7. Secondary structures predicted by SCORPION on Thylakoid-soluble phosphoprotein TSP9.
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