
J. Parallel Distrib. Comput. 87 (2016) 91–101
Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

A load-balancing workload distribution scheme for three-body
interaction computation on Graphics Processing Units (GPU)
Ashraf Yaseen a, Hao Ji b, Yaohang Li b,∗
a Department of Electrical Engineering and Computer Science, Texas A&M University-Kingsville, Kingsville, TX 78363, United States
b Department of Computer Science, Old Dominion University, Norfolk, VA 23529, United States

h i g h l i g h t s

• Load-balancing scheme for calculating three-body interactions on GPU.
• Perfect load-balancing is achieved if N is not divisible by 3.
• Nearly perfect load-balancing is obtained if N is divisible by 3.
• Parallel efficiency demonstrated in three-body potentials.

a r t i c l e i n f o

Article history:
Received 17 July 2014
Received in revised form
19 September 2015
Accepted 14 October 2015
Available online 24 October 2015

Keywords:
GPU
Three-body interactions
Load balancing

a b s t r a c t

Three-body effects play an important role for obtaining quantitatively high accuracy in a variety of
molecular simulation applications. However, evaluation of three-body potentials is computationally
costly, generally of O(N3) where N is the number of particles in a system. In this paper, we present a load-
balancing workload distribution scheme for calculating three-body interactions by taking advantage of
the Graphics Processing Units (GPU) architectures. Perfect load-balancing is achieved if N is not divisible
by 3 and nearly perfect load-balancing is obtained if N is divisible by 3. The workload distribution scheme
is particularly suitable for the GPU’s Single Instruction Multiple Threads (SIMT) architecture, where
particle’s data accessed by threads can be coalesced into efficient memory transactions. We use two
potential energy functions with three-body terms, the Axilrod–Teller potential and the Context-based
Secondary Structure Potential, as examples to demonstrate the effectiveness of our workload distribution
scheme.

© 2015 Elsevier Inc. All rights reserved.
1. Introduction

Although many molecular simulations are typically confined
to evaluating interactions between molecular pairs, recent studies
show that three-body or even higher order effects play an
important role for quantitatively accurate computation in a
variety of molecular simulation applications [10,33,24,26]. For
example, the three-body effects strongly influence solid–liquid and
vapor–liquid equilibrium of fluids [34,32,25,2]. The context-based
secondary structure potential (CSSP) taking three-body statistical
terms into account leads to significant accuracy enhancement
in evaluating protein secondary structures [21]. A three-body
potential incorporating interaction between a DNA base and a
protein residuewith regard to the effect of a neighboring DNA base

∗ Corresponding author.
E-mail addresses: ashraf.yaseen@tamuk.edu (A. Yaseen), hji@cs.odu.edu (H. Ji),

yaohang@cs.odu.edu (Y. Li).

http://dx.doi.org/10.1016/j.jpdc.2015.10.003
0743-7315/© 2015 Elsevier Inc. All rights reserved.
outperforms two-body potentials in specific protein—DNA site
recognition [37]. A four-body residue–residue contact potential
has demonstrated its effectiveness compared with pairwise
potentials in discriminating native protein conformations [11].
Inclusion of three-body effects in the additive CHARMM protein
CMAP potential also results in enhanced cooperativity of α-helix
and β-hairpin formations [7].

Despite the advantages of evaluating three-body interactions
in molecular simulations, the main obstacle of a potential
energy involving three-body or higher order terms is its high
computational cost. In general, when external influences are not
presented, the potential energy of a systemwith N particles can be
evaluated as

E =


i≠j

U(pi, pj) +


i≠j≠k

U(pi, pj, pk)

+


i≠j≠k≠l

U(pi, pj, pk, pl) + . . . ,

http://dx.doi.org/10.1016/j.jpdc.2015.10.003
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2015.10.003&domain=pdf
mailto:ashraf.yaseen@tamuk.edu
mailto:hji@cs.odu.edu
mailto:yaohang@cs.odu.edu
http://dx.doi.org/10.1016/j.jpdc.2015.10.003


92 A. Yaseen et al. / J. Parallel Distrib. Comput. 87 (2016) 91–101
where U(pi, pj) is the two-body term involving two particles
pi and pj, U(pi, pj, pk) is the three-body term, U(pi, pj, pk, pl) is
the four-body term, and so on. Three-body potentials explicitly
calculate the three-body terms which are ignored in two-body
potentials together with other higher order terms. Therefore,
provided that the three-body terms are calculated accurately, a
three-body potential usually yields better accuracy than the two-
body ones. However, the tradeoff is significantly more computing
time. The computing time increases largely when higher order
terms are included. Generally, two-body terms require O(N2)
operations, while O(N3) for three-body terms, O(N4) for four-body
terms, and so forth. Computation reduction approaches such as
Barnes–Hut method, fast multipole, and particle-mesh [4,9,14,17]
can significantly reduce the overall computation complexity by
simplifying interactions between far apart particles. Nevertheless,
simulation using computation involving three- or higher-body
terms is still unrealistic for a system with relatively large number
of interacting molecules until recent performance improvements
have been achieved in computer systems.

Graphical Processing Units (GPUs) have been a powerful
computational tool in many science and engineering related
problems. Today’s GPUs greatly outpace CPUs in arithmetic
throughput and memory bandwidth, forming a dramatic shift
in the field of high performance computing (HPC) [30]. With
the massively parallel computing mechanisms, GPUs are able to
deliver performance speedups magnitudes of times higher than
the CPU, to solve problems in a few minutes instead of hours
or days [22,38,35]. Hence, GPUs has become the ideal processor
to accelerate a wide variety of data parallel applications. Being
able to simultaneously calculate forces on N particles, GPU has
been employed to accelerate the N-body molecular simulation
in a variety of applications. For example, Belleman et al. [6]
developed a direct gravitational N-body simulation on GPU.
Nyland et al. [19] implemented a fastN-body simulation on GPU in
astrophysical applications. Stock and Gharakhani [31] introduced
a GPU-accelerated multipole-accelerated treecode method for
turbulent flow computations. Lashuk et al. [20] proposed a parallel
fast multipole method (FMM) on heterogeneous architectures
with CPUs and GPUs. Anderson et al. [1] carried out general
molecular dynamics on GPU, by simulating N particles in a finite
box with periodic boundary conditions. Friedrichs et al. [12]
also presented an accelerated molecular dynamic simulation
implemented on GPU. Hamada et al. [16] came upwith an efficient
GPU implementation of Barnes–Hut algorithm on large data sets
in astrophysics and turbulence and Jetley et al. [18] provided a
scalable implementation on GPU clusters. Grimm and Stadel [15]
designed a hybrid symplectic N-body integrator to analysis planet
and planetesimal dynamics in the late stage of planet formation
with GPU acceleration. Significant speedups have been observed
in the above applications.

Although the N-body interactions can be carried out in a
straightforward way on a serial processor, efficient parallel imple-
mentation to fully take advantage of GPU architectures requires
deliberate considerations. Our previous work [35] on symmetric
two-body interaction computation on GPU has led to a workload
distribution scheme, which is designed to assign computations
of pair-wise atom interactions to GPU threads to achieve perfect
or near-perfect load balancing in the symmetric N-body problem
while facilitating coalesce memory access. In this paper, we ex-
tend our previous GPU-based two-body load-balancing workload
distribution scheme to explicitly calculations of three-body terms.
The effectiveness of our approach is demonstrated in the computa-
tion of the Axilrod–Teller potential [3], a physics-based three-body
potential function, and the Context-based Secondary Structure Po-
tential (CSSP), a knowledge-based potential energy function with
three-body terms to evaluate protein conformation adopting cer-
tain secondary structure pattern [21,36].
The rest of the paper is organized as follows. Our proposed GPU
workload distribution for computing three-body interactions is
presented in Section 2. Section 3 shows our computational results.
Finally, Section 4 summarizes our conclusions and future research
directions.

2. GPU-based load-balancing scheme for computing three-
body interactions

Our load-balancing scheme assumes that the three-body
interaction terms are independent of the order of the three
particles. In other words, the order permutation of the three
particles does not change the potential value. Moreover, for
simplicity in illustration, we assume one-thread-per-particle
assignment, i.e., each thread keeps one particle information
unchanged and then shifts the second or the third particles
information at each iteration to obtain all combinations of triplets.
A fine-grained assignment other than the one-thread-per-particle
assignment to enhance the GPU performance on systems with
small number of particles is discussed in Section 2.4.

2.1. Serial implementation

The general serial implementation of three-body interaction
computation is straightforward. All oneneeds to do is to enumerate
all triplet combinations of three different particles and then
calculate the three-body energy of the triplet. The corresponding
pseudo code is illustrated in Algorithm 1. For a molecular system
with N particles and assuming that each pair of atoms are
interacting, there are totally N ∗ (N − 1) ∗ (N − 2)/6 triplet
computations and each particle is involved in exactly (N − 1) ∗

(N − 2)/2 interaction computations. However, for each particle in
the outer loop in Algorithm 1, its number of three-body interaction
calculations in the middle and inner loops varies gradually from
(N − 1) ∗ (N − 2)/2 to 1. Consequently, directly mapping the
calculations in the middle and inner loops to GPU threads will lead
to a highly unbalanced workload distribution.

2.2. Rotational symmetry

Our implementation of load-balancing workload distribution
scheme for three-body interaction computation onGPU is based on
the concept of rotational symmetry. Assuming that the N particles
in the system are stored in a cyclic array, we use i, j, and k to denote
the indices of the three particles in clockwise order, and dij, djk, and
dki to denote the position separations between particles i and j, j
and k, and k and i, respectively. Here dij is calculated as

dij =


j − i, i < j
j − i + N, i > j

djk and dki are calculated in a similar way. Clearly, we can have the
following two properties

(1) i ≠ j ≠ k, and
(2) dij + djk + dki = N .

Then, we study the position separation pattern of of a
triplet (Pi, Pj, Pk). Considering two position separation patterns

and , they are rotationally symmetric if dij =

d′

ij and djk = d′

jk and dki = d′

ki or dij = d′

jk and djk = d′

ki and
dki = d′

ij or dij = d′

ki and djk = d′

ij and dki = d′

jk. Or equivalently,

if can turn into via cyclic rotations, then



A. Yaseen et al. / J. Parallel Distrib. Comput. 87 (2016) 91–101 93
Fig. 1. An example with N = 6 with thread 1 starting from P1, and thread 6 from P6. The highlighted particle is the first particle that a thread handles. For separation

pattern , threads 1 and 6 will calculate three-body interactions of triplets (P1, P2, P3) and (P6, P1, P2), respectively. If thread 1 adopts a position separation pattern

, which is rotationally symmetric to , then thread 1will compute three-body interaction of triplet (P1, P2, P6), which overlaps the computation of thread

6 with position separation pattern .
and are rotationally symmetric. Given an

example of a systemwhereN = 6, , and

are rotationally symmetric but and are not. In
our GPU implementation, assuming one-thread-per-particle and
all threads share the same computation pattern due to GPU’s
SIMT architecture, rotationally symmetric position separation
patterns indicate that some threads will calculate certain triplets
in overlap, which will lead to waste of computational power and,
more seriously, erroneous results if not handled correctly. Fig. 1
illustrates an example where N = 6. Thread 1 starts from particle

P1 and triplet (P1, P2, P3) has position separation pattern .

If a rotationally symmetric position separation pattern of ,

for instance, is adopted, then thread 1will carry out three-
body interaction calculation on triplet (P1, P2, P6), which is the
same as the three-body interaction calculation on triplet (P6, P1,
P2) in thread 6 starting at P6 with position separation pattern

. In summary, the fundamental idea of our GPU-based
algorithm is to uniquely enumerate all position separation patterns
where there are no rotationally symmetric pairs.

To balance workload distribution among GPU threads, we
design a novel workload distribution scheme by enumerating all
position separation patterns without sharing rotational symmetry.
The workload distribution scheme is described in Algorithm 2. For
thread i, the index of the first particle is always i specified by the
passed parameter and the second and third particles are selected
according to the enumerated position separation patterns. The
algorithm enumerates all position separation patterns satisfying

dij ≤ djk and dij < dki. (1)

It is easy to show that any position separation pattern that does not
satisfy the above condition is rotationally symmetric to one of the
position separation patterns satisfying this condition, because we
can always rotate the smallest position separation to dij. The above
condition also indicates that dij is bounded by ⌊(N − 1)/3⌋. Hence,
our algorithm iterates the second particle index from (i + 1) mod
N to (i + ⌊(N − 1)/3⌋) mod N . Then, the third particle is iterated
to satisfy (1).

Fig. 2 illustrates an example of enumerating triplets by the first
thread (thread 1) in a system with 10 particles, using Algorithm
2. For thread 1, the first particle is always P1. The second particle
iterates from P2 to P4. When the second particle is P2 (dij = 1),
three-body interactions of triplets (P1, P2, P3), (P1, P2, P4), (P1,
P2, P5), (P1, P2, P6), (P1, P2, P7), (P1, P2, P8), (P1, P2, P9) with

position separation patterns , , , ,

, , and are calculated, respectively.When
the second particle is P3 (dij = 2), the three-body interactions
of triplets (P1, P3, P5), (P1, P3, P6), (P1, P3, P7), (P1, P3, P8) with

respective separation patterns , , , and



94 A. Yaseen et al. / J. Parallel Distrib. Comput. 87 (2016) 91–101
(a) dij = 1, the second particle is P2 and
three-body interactions of triplets (P1, P2, P3),
(P1, P2, P4), (P1, P2, P5), (P1, P2, P6), (P1, P2, P7),
(P1, P2, P8), (P1, P2, P9) with position separation

patterns , , ,

, , , and

are calculated, respectively.

(b) dij = 2, the second particle is P3 and
three-body interactions of triplets (P1, P3, P5),
(P1, P3, P6), (P1, P3, P7), (P1, P3, P8) with

separation patterns , ,

, and are calculated,
respectively.

(c) dij = 3, the second particle and only one
three-body interaction of triplet (P1, P4, P7)

with separation pattern is calculated.

Fig. 2. An example of enumerating triplets without sharing rotational symmetry in position separation patterns by the first thread (thread 1) in a system with 10 particles.
are accumulated. When the second particle is iterated
to P4 (dij = 3), only one triplet(P1, P4, P7) with separation

pattern can satisfy (1). The completion of the algorithm
allows thread 1 to carry out three-body interactions of 12 triplets
with different position separation patterns that are not rotationally
symmetric. Assuming one-particle-per-thread assignment, the
total number of three-body interactions is 12 ∗ 10 = 120 =

10 ∗ 9 ∗ 8/6.
The only position separation patterns that Algorithm 2 cannot

iterate are order three rotationally symmetric patterns in case
of dij = djk = dki, when N is divisible by 3. The order
three rotationally symmetric patterns will cause the triplets with
equal separation distances to be calculated repeatedly by different
threads. Fig. 3 shows an example of a system with 6 particles,
where an order three rotationally symmetric pattern
exists. As a result, threads 1, 3, 5 over calculates triplet (P1,
P3, P5) while threads 2, 4, 6 over calculates triplet (P2, P4, P6).
Furthermore, if N is divisible by 3, (N − 1) ∗ (N − 2) is no
longer divisible by 6 and thus the total number of N ∗ (N − 1) ∗

(N − 2)/6 interaction computations cannot be equally distributed
to N threads. Consequently, order three rotationally symmetric
patterns require special handling.

2.3. Load-balancing workload distribution scheme

Algorithm 3 shows the complete workload distribution algo-
rithm with special handling of the case when N is divisible by
3. This algorithm is based on the pseudo-code provided in Al-
gorithm 2. Only the first N/3 threads will carry out the three-



A. Yaseen et al. / J. Parallel Distrib. Comput. 87 (2016) 91–101 95
Fig. 3. Order three rotational symmetry in a system with 6 particles. The highlighted particle is the first particle a thread handles. Threads 1, 3, 5 over calculate triplet (P1,
P3, P5) while threads 2, 4, 6 over calculate triplet (P2, P4, P6).
body interaction computation of triplets with order three rotation-
ally symmetric position separation patterns to avoid over calcu-
lation. When N is not divisible by 3, each thread carries out ex-
actly (N−1)∗(N−2)/6 three-body interaction operations, where
perfect load-balancing is achieved. When N is divisible by 3, the
first N/3 threads carry out an additional iteration of three-body
interaction computation for triplets with order three rotationally
symmetric patterns. When N is big enough and thereby a lot of
iterations are needed, this additional iteration has little impact to
the overall systemperformance andhencewe can claim that nearly
perfect load-balancing is obtained.

Fig. 4(a), (b), and (c) show the workload distribution when N =

7, 8, and 9, respectively, with perfect load-balancing when N = 7
and 8 and nearly perfect load-balancing when N = 9. In addition
to load balancing, the workload distribution scheme is particularly
suitable for the GPU’s SIMT architecture [29]. This is due to the fact
that, at each iteration step, each thread reads data from different
particleswith the same stride,which can be coalesced into efficient
memory transactions.

2.4. Additional performance improvement implementations on GPU

The above load-balancing workload distribution scheme
assumes the one-thread-per-particle on GPU architecture. Never-
theless, for molecular systems with small N value, the one-thread-
per-particle scheme with N threads may not produce enough
threads to fully utilize all resources in GPU. To address this is-
sue, we implement fine-grained threads by dividing the workload
originally assigned to one thread to multiple threads so that suf-
ficient threads are produced when N is small. Firstly, we calculate
the number of threads that can be assigned to handle interactions
computation of a particle (Tp) by dividing themaximumnumber of
threads that a GPU device can launch (Tmax) over the total number
of particles N .

Tp = ⌊Tmax/N⌋ .

Then, we distribute the workload of interaction computation to Tp
threads. As a result, large number of threadswhose total number is
near the maximum number of threads that the GPU can launch are
created. In addition to fine-grained treads, other standard CUDA
programming techniques, including parallel sum reduction, loop
unrolling, and coalesce memory access are implemented in order
to fully take advantage of the GPU architecture [29].

3. Computational results

Two three-body potentials, including the Axilrod–Teller poten-
tial and the CSSP potential are used to demonstrate the effective-
ness of our load-balancing workload distribution scheme on GPU.
We name the GPU implementation of Axilrod–Teller and CSSP po-
tential energy functions ‘‘GPU-AxT’’ and ‘‘GPU-CSSP,’’ respectively.
The load-balancing workload distribution scheme for three-body
interactions is adopted in GPU-AxT and GPU-CSSP. As for the two-
body interactions in GPU-CSSP, we used our previous approach to
balance the workload [35]. Double precision format is used in both
functions. Furthermore, the standard CUDA programming tech-
niques for performance improvement are implemented in both po-
tentials.

The GPU-AxT and GPU-CSSP programs are tested on a server
with four Tesla C2070 GPUs. The Tesla C2070 GPU (Fermi
architecture) has 14 multiprocessors with 32 cores each, 6 GB
of global memory, 64 kB of RAM which can be configured
between Shared Memory and L1 cache, and 32 kB of registers per
multiprocessor.

We benchmark GPU-AxT and GPU-CSSP on a set of systems
of various sizes. The GPU time we measured includes the time
of transferring the system information (particles) arrays to GPU



96 A. Yaseen et al. / J. Parallel Distrib. Comput. 87 (2016) 91–101
device memories, GPU execution time, and the time of retrieving
the calculated results fromGPU.We use the nvcc compiler in CUDA
2.0 with ‘‘-O3’’ flag for GPU implementations.

3.1. Computational results of Axilrod–Teller potential

3.1.1. Axilrod–Teller potential
The Axilrod–Teller potential is an intermolecular potential

for the interaction of the van der Waals type between three
particles [3]. Considering particles i, j, and k, the Axilrod–Teller
potential uijk is calculated as,

uijk = v


1

r3ij r
3
ikr

3
jk

+
3(−r2ij + r2ik + r2jk)(r

2
ij − r2ik + r2jk)(r

2
ij + r2ik −r2jk)

8(r5ij r
5
ikr

5
jk)


where v is a non-additive coefficient and rij, rjk, and rik are
Euclidean distances between particles i and j, j and k, and k and
i, respectively.

3.1.2. GPU-AxT performance
We employ GPU-AxT to calculate the Axilrod–Teller potential

energy in a particle system where a simulation box of length L is
initialized with N Argon particles (atoms). In order to demonstrate
the effectiveness of Axilrod–Teller potential implementation on
the GPU (GPU-AxT), we run GPU-AxT on simulation boxes of
various sizes (L ranges from 14 for 343 particles to 60 for 27,000
particles). The execution time of the Axilrod–Teller potential
evaluation is averaged over 100 runs.

Fig. 5 shows the performance of GPU-AxT implementations
on systems of various sizes in terms of double-precision GFLOPS
per second on NVIDIA Tesla C2070. For GPU-AxT implementation
with one thread per particle, there are certain inefficiencies for
systemswith less than2500particles, due to insufficient number of
threads to fully take advantage of the GPU architecture. To improve
the performance of systems with small number of particles,
we adopt a fine-grained implementation by evenly splitting the
workload of three-body interaction computations belonging to one
thread to multiple threads so that nearly the maximum number
of threads that a GPU device can launch is created. Significant
performance improvements are found in systems with smaller
number of particles when fine-grained threads are employed,
whose floating point throughputs are promoted to be closer to
those with a lot of particles. As the number of particles increases,
the floating point throughput curves of fine-grain threads and one-
thread-per-particle start to merge because the increasing number
of threads in one-thread-per-particle strategy makes more and
more efficient use of the GPU architecture. For systems with
more than 3000 particles, the floating point throughput of GPU-
AxT implementation with fine-grained threads is close to but
slightly less than that of the two-body potential (262 GFLOPS/s),
benchmarked using the ‘‘nbody’’ program provided by Cuda SDK
with 100,000 particles. The slight performance loss in three-
body potential computation is due to an additional round of
memory fetches for triplet computations compared to doublet
computations as well as more integer operations to determine the
particle indices in each triplet.

Fig. 6 shows the memory-only, arithmetic-only, and full-kernel
time thatGPU-AxT spends on a systemwith 3375particles. One can
find that 70.6% of the memory operations are overlapped with the
arithmetic operations. After all, with sufficient number of threads,
the memory access latency can be effectively masked.

Our GPU-AxT implementation requires transferring the parti-
cles coordinates arrays, from the host memory to the GPU device
memory and retrieving the calculated overall energy from the de-
vice memory. Table 1 shows the data transfer time (Odata-transfer)
and the calculation time (tkernel) in small, medium, and large sys-
tems. The data transfer time is very small compared to the overall
GPU-AxT energy evaluation time.

3.1.3. Load balancing scheme vs. Direct mapping scheme
Theoretically, assuming every three particles are interacting

with each other, if the serial algorithm is directly mapped to
GPU implementation, the longest thread needs to carry out (N −

1) ∗ (N − 2)/2 three-body interaction calculations. When the
load-balancing scheme is used, each thread handles at most
(N − 1) ∗ (N − 2)/6 + 1 three-body interactions. Therefore,



A. Yaseen et al. / J. Parallel Distrib. Comput. 87 (2016) 91–101 97
(a) Perfect balancing (N = 7).

(b) Perfect balancing (N = 8).

(c) N = 9, due to order three rotational symmetry, only the first three threads handles triplets (1, 4, 7), (2, 5, 8), and (3, 6, 9), respectively, at iteration 10.

Fig. 4. Workload distribution scheme when N = 7, 8, 9. Perfect load balancing is achieved when N = 7 and 8. Near-perfect load balancing is obtained when N = 9.
Table 1
Data transferring times and computation time in GPU-AxT.

Component Mode Time (µs)
Small-system (3375 particles) Medium-system (15,625 particles) Large-system (42,875 particles)

Particle coordinate arrays Host to device 0.07 0.23 0.62
Axilrod–Teller energy Device to host 0.07 0.15 0.32
Axilrod–Teller kernel On device 243.35 25,004.82 455,049.73
the theoretical speedup of the load-balancing scheme over direct
mapping scheme is approximately 3. Fig. 7 shows that, when
no distance cutoff is applied, the GPU-AxT implementation using
the load-balancing scheme is around 3 times faster than that of
direct mapping. This agrees well with our theoretical analysis.
Particularly in practical large-scale simulations that takes hours to
days, the three times speedup of load-balancing schemeover direct
mapping is much appreciated.

Nevertheless, in practice, when interactions between particles
separated over a certain distance are weak enough to be ignored
in computation, truncation by distance cutoff is often applied.
Provided that the accumulated errors have negligible impact to
simulation accuracy and do not affect the stability of the system,
using the distance cutoff can significantly reduce the overall three-
body interaction computation. Fig. 7 also shows that the speedup
of the GPU-AxT implementation using the load-balancing scheme
when half of boxwidth is used as cutoff distance over that of direct
mapping is reduced to approximately 1.8.

The performance reduction of the balanced GPU-AxT with
distance cutoff is mainly caused by the divergent branches in the



98 A. Yaseen et al. / J. Parallel Distrib. Comput. 87 (2016) 91–101
Fig. 5. Performance comparison of GPU-AxT implementations on systems of
various sizes in terms of double-precision floating point throughput on NVIDIA
Tesla C2070.

Fig. 6. Memory-only, arithmetic-only, and full-kernel time inGPU-AxT on a system
with 3375 particles. 70.6% of memory operations are overlapped with arithmetic
operations.

Fig. 7. Speedup of GPU-AxT Implementation using load-balancing scheme
over that of direct mapping. When no cutoff distance is applied, speedup is
approximately 3, agreeing well with the theoretical analysis. When half box width
cutoff is adopted, speedup is reduced to ∼1.8.

program. Evaluation of the Axilrod–Teller potential with distance
cutoff requires testing pairwise particle distances—if any one of the
pairwise particle distances is higher than the cutoff distance, the
three-body interaction computation will not be carried out. When
the threads handling three-body interactions within the distance
cutoff as well as those exceeding cutoff co-reside in the same GPU
warp, divergent branches will occur in runtime.
Table 2
Comparison of the number of divergent branches in GPU-AxT with half box cutoff
distance and GPU-AxT without cutoff.

Box width # of branch instruction # of divergent branch
No cutoff w. cutoff No cutoff w. cutoff

10 2,628 6,722 0 1,319
12 7,817 16,954 0 1,338
14 39,338 91,987 0 11,766
16 87,558 207,909 0 27,614
18 266,098 640,687 0 89,429
20 500,511 1,182,504 0 152,506
22 1,181,940 2,858,410 0 435,072
24 2,489,780 5,809,260 0 730,359
26 4,829,030 11,573,100 0 1,635,830
28 8,787,680 20,750,600 0 2,717,490
30 15,192,000 36,138,900 0 5,058,260

Table 2 compares the number of divergent branches in GPU-
AxT with half box width cutoff with GPU-AxT without distance
cutoff. The performance data is obtained by NVIDIA Compute
Visual Profiler 3.2 [8].Whennodistance cutoff is adopted, GPU-AxT
does not suffer from branch divergence because pairwise particle
distances are not necessarily checked against cutoff distance. In
contrast, when distance cutoff is applied, branch instructions (if
statements) are inserted to compare the pairwise particle distances
with the cutoff distance, which potentially leads to divergent
branches. When half box width cutoff is used, the divergent
branches in GPU-AxT are approximately 15% of the total number
of branch instructions, which results in speedup reduction.

3.1.4. Applications in Monte Carlo and molecular dynamics simula-
tion

We apply GPU-AxT to a Monte Carlo sampling program and
a molecular dynamics program for simulating Argon gas systems
to demonstrate the effectiveness of GPU-accelerated three-body
calculations. The measured computation time is the overall
application execution time, which includes the CPU time, the GPU
time, and the data transferring time between host memory and
device memory.

The Monte Carlo simulation is carried out by using Cartesian
all atoms move where the position of every particle in the system
is changed by a small random perturbation during a Monte Carlo
trial. The Monte Carlo sampling program employs the Metropolis
algorithm [28] and the Axilrod–Teller potential energy is evaluated
in every iteration step to determine the acceptance of the proposed
new conformation. Adopting GPU-AxT, the Monte Carlo sampling
program is implemented as a heterogeneous CPU–GPU program.
The evaluation of the Axilrod–Teller potential energy is carried out
on the GPU while the rest of the Monte Carlo computations are
executed on the CPU. We execute the Monte Carlo program using
GPU-AxT on a Tesla C2070 simulating a systemwith 3375 particles.
The computation time is averaged over 1000Monte Carlo iteration
steps. Compared to that of the direct-mapping implementation
(10.94 s), the computation time per step in the Monte Carlo
programusing load-balancing GPU-AxT is reduced to 3.68 s—a 2.97
speedup, when no distance cutoff is applied. When half box width
distance cutoff is used, computation time per step in the Monte
Carlo program using load-balancing GPU-AxT is 0.89 s, which is
1.81 times faster than the direct-mapping implementation (1.62 s).

The implementation of the molecular dynamics program is
based on the pseudocode described in [23], which is tuned and
yields 10 times faster than normal implementation according
to [23]. The Axilrod–Teller potential is used to estimate the van der
Waals interactions between three particles. The main difference
compared to the Monte Carlo program, where only the overall
potential energy value is needed, is that the forces acting on
all particles need to be calculated at each iteration step. In our



A. Yaseen et al. / J. Parallel Distrib. Comput. 87 (2016) 91–101 99
GPU-AxT implementation for molecular dynamics simulation, we
maintain arrays of velocities and accelerations for particles in
the system. In each three-body interaction calculation in GPU-
AxT, the accelerations of the three participating particles are
calculated as the derivative of their partial potential energy with
respect to their positions and are integrated accordingly. Once
all interaction calculations are completed in GPU-AxT, the new
velocity and position of each particle are then evaluated according
to its acceleration.

The molecular dynamic simulation program is also imple-
mented as a heterogeneous CPU–GPU program, where the particle
interaction calculations are carried out on the GPU while the rest
of the program is executed on the CPU. We carried out the pro-
gram on a system with 3375 particles and the computation time
is recorded for 1000 iterations. When no distance cutoff is applied,
the overall computation time of the molecular dynamic program
using load-balancing GPU-AxT is 11.57 h, which is about 2.9 times
faster than the direct-mapping implementation (33.06 h). When
half boxwidth distance cutoff is used, the overall computation time
using load-balancing GPU-AxT becomes 1.91 h, which is a ∼1.5
speedup over the direct-mapping implementation (2.77 h).

The computational results of theMonte Carlo andmolecular dy-
namics programs are consistent with the analysis in Section 3.1.3.
It is important to note that in this work we only consider how the
GPU acceleration in three-body interaction calculation using Axil-
rod–Teller potential can affect the overall performance of the simu-
lation programs. In fact, if more parallel computation components,
e.g., the proposal function of generating new particle positions in
Monte Carlo or calculations of the new particle velocities and po-
sitions in molecular dynamics, are moved to the GPU, more signif-
icant performance improvements are possible.

3.2. Computational results of context-based secondary structure
potential (CSSP)

3.2.1. Context-based secondary structure potential (CSSP)
CSSP is a statistical potential integrating inter-residue interac-

tion potentials for assessing the quality of predicted protein sec-
ondary structures [21]. Considering a protein chain with L amino
acid residues and a fragment of size S where S < L, the CSSP po-
tential of a protein molecule is calculated as,

Uprotein =

L−S+1
i=0


S
i

U(Ri) +

S
i≠j

U

Ri, Rj


+

S
i≠j≠k

U

Ri, Rj , Rk


−

L−S−1
i=1


S−1
i

U (Ri)

+

S−1
i≠j

U

Ri, Rj


+

S−1
i≠j≠k

U

Ri, Rj , Rk


,

where Ri denotes residue i in the protein chain andU(Ri),U

Ri, Rj


,

and U

Ri, Rj, Rk


are singlet, doublet, and triplet potential terms,

respectively.

3.2.2. Performance of load-balancing scheme
Unlike the Axilrod–Teller potential, which is a pure three-body

potential, the CSSP potential includes three-body terms together
with two- and single-body terms. In GPU-CSSP implementation,
the single-body terms are calculated using direct mapping and the
two-body terms are calculated using the pairwise load-balancing
scheme described in [35], which has a theoretical speedup of ∼2.0
over direct mapping scheme. The three-body terms are calculated
using the load-balancing workload distribution scheme described
in this paperwith theoretical speedup of∼3.0 over directmapping.
Fig. 8. Performance of the balancedGPU-CSSPwith respect to the unbalancedGPU-
CSSP on Tesla C2070.

Fig. 9. Computational time and speedup of GPU-AxT implementation using
multiple Tesla C2070 GPUs on a molecular system with 8000 particles. The elapsed
time is the average iteration time over 100 runs.

Fig. 8 shows the speedup of the load-balancing GPU-CSSP over
that of direct-mapping on a set of proteins ranged from tens to
hundreds of residues, where an average speedup of 2.6 is obtained.
This speedup is consistent for small and large proteins.

3.3. Scalability of the load balancing scheme across multiple GPUs

The load-balancing workload scheme can be smoothly scaled
across multiple GPUs. Based on the fact that the three-body inter-
action computations of triplets in each thread are independent, we
divide the computation work of each thread into approximately
even nGPU partitions, where nGPU is the number of GPUs available,
so that each GPU can carry out one partition simultaneously. Once
the computations on multiple GPUs are completed, partial sums
of the results from each GPU are collected and accumulated. For
large-scale three-body computations, the GPU-AxT implementa-
tion is compute bound, as memory transaction cost is negligible
compared to that of the GPU computations for three-body interac-
tion.

Fig. 9 shows that the elapsed time of executing GPU-AxT on
a system with 8000 particles using multiple Tesla C2070 GPUs.
One can find that the GPU-AxT implementation can achieve nearly
linear speedup by using multiple GPUs over the case with a single
GPU.

4. Conclusions

In this paper, we investigate the approaches of using GPU
to accelerate calculation of general three-body potential energy
functions for molecular simulation applications. A workload
distribution scheme is developed to achieve perfect load-balancing
when N is indivisible by 3 and nearly perfect load-balancing



100 A. Yaseen et al. / J. Parallel Distrib. Comput. 87 (2016) 91–101
otherwise. The load-balancing workload distribution scheme has
demonstrated its effectiveness in the GPU-implementations of the
Axilrod–Teller potential and the CSSP potential where three-body
terms are incorporated.

The new features of latest GPU architectures have the potential
to further improve the performance of our three-body energy
potential implementations on GPU. For example, the new shuffle
(SHFL) instruction of the Kepler GPU architecture allows parallel
threads to access data from other threads directly, which enable
triplets to be shuffled among threads in a warp and thus enhance
parallel efficiency. This will be one of the research directions in our
future work.

When a distance cutoff is used, the emergence of potential
divergent branches hurts the efficiency of the load-balancing
scheme for three-body interaction computation, as shown in
Section 3.1.3. Data structures such as quadtree in 2D [27] or
octree in 3D [5], may be used to reduce the number of divergent
branches and thus enhance computational efficiency, due to the
fact that three-body interactions are only needed to be computed
in the pre-computed space subdivision. With the cost of auxiliary
memory [13], the three-body interaction computation may be
accelerated significantly. We will also pursue this direction in our
future implementations.

Unfortunately, extending this load-balancing workload distri-
bution scheme to four-body potential calculation on GPUs is not
straightforward. The position separation patterns in four-body
term calculation are more complicated than those of three-body
due to order two rotational symmetry in position separation pat-
terns when four particles are involved. Order two rotational sym-
metry does not exist in three-body term calculation and requires
deliberate analysis. Nonetheless, in general, the computational
cost of four-body or higher order terms are much higher than that
of three-body ones while the effectiveness of four-body or higher
order terms still need theoretical justifications. Therefore, at this
moment, there is no immediate urgency in extending the load-
balancing workload distribution scheme for general four-body or
higher order terms calculations on GPUs.

Acknowledgments

We would like to thank the reviewers for their suggestions
that greatly help us improve the contents of the manuscript.
Yaohang Li acknowledges support from NSF grant 1066471. Hao
Ji acknowledges support from ODU Modeling and Simulation
Fellowship.

References

[1] J.A. Anderson, C.D. Lorenz, A. Travesset, General purpose molecular dynamics
simulations fully implemented on graphics processing units, J. Comput. Phys.
227 (10) (2008) 5342–5359.

[2] J.A. Anta, E. Lomba, M. Lombardero, Exploring the influence of three-body
classical dispersion forces on phase equilibria of simple fluids: An integral-
equation approach, Phys. Rev. E (3) 49 (1) (1994) 402–409.

[3] B.M. Axilrod, E. Teller, Interaction of the van der Waals type between three
atoms, J. Chem. Phys. 11 (6) (1943) 299–300.

[4] J. Barnes, P. Hut, A hierarchical O(N-Log-N) force-calculation algorithm, Nature
324 (6096) (1986) 446–449.

[5] J. Bedorf, E. Gaburov, S.P. Zwart, A sparse octree gravitational Nbody code that
runs entirely on theGPUprocessor, J. Comput. Phys. 231 (7) (2012) 2825–2839.

[6] R.G. Belleman, J. Bedorf, S.F.P. Zwart, High performance direct gravitational N-
body simulations on graphics processing units II: An implementation in CUDA,
New Astron. 13 (2) (2008) 103–112.

[7] R.B. Best, J. Mittal, M. Feig, A.D. MacKerell Jr., Inclusion of many-body
effects in the additive CHARMM protein CMAP potential results in enhanced
cooperativity of alpha-helix and beta-hairpin formation, Biophys. J. 103 (5)
(2012) 1045–1051.

[8] Compute Visual Profiler 3.2 [http://www.developer.download.nvidia.com].
[9] T. Darden, D. York, L. Pedersen, Particle mesh Ewald—an N. Log(N) method for

Ewald sums in large systems, J. Chem. Phys. 98 (12) (1993) 10089–10092.
[10] M.J. Elrod, R.J. Saykally,Many-body effects in intermolecular forces, Chem. Rev.

94 (7) (1994) 1975–1997.
[11] Y. Feng, A. Kloczkowski, R.L. Jernigan, Four-body contact potentials derived
from two protein datasets to discriminate native structures from decoys,
Proteins 68 (1) (2007) 57–66.

[12] M.S. Friedrichs, P. Eastman, V. Vaidyanathan, M. Houston, S. Legrand, A.L.
Beberg, D.L. Ensign, C.M. Bruns, V.S. Pande, Accelerating molecular dynamic
simulation on graphics processing units, J. Comput. Chem. 30 (6) (2009)
864–872.

[13] I. Gargantini, An effective way to represent quadtrees, Commun. ACM 25 (12)
(1982) 905–910.

[14] L. Greengard, The rapid evaluation of potential fields in particle systems
(Thesis (doctoral)) MIT Press, Yale University, Cambridge, Mass, 1988.

[15] S.L. Grimm, J.G. Stadel, The genga code: Gravitational encounters in N-body
simulations with GPU acceleration, Astrophys. J. 796 (1) (2014).

[16] T. Hamada, R. Yokota, K. Nitadori, T. Narumi, K. Yasuoka, M. Taiji, 42
TFlops hierarchical N-body simulations on GPUs with applications in both
astrophysics and turbulence, in: Proceedings of the Conference on High
Performance Computing Networking, Storage and Analysis, 2009.

[17] R.W. Hockney, J.W. Eastwood, Computer Simulation Using Particles, A. Hilger,
Bristol, England, Philadelphia, 1988, Special student edn..

[18] P. Jetley, L. Wesolowski, F. Gioachin, L.V. Kale, T.R. Quinn, Scaling hierarchical
N-body simulations on GPU clusters, in: High Performance Computing,
Networking, Storage and Analysis SC, 2010 International Conference for:
13–19 November 2010, Vol. 2010, pp. 1–11.

[19] M.H. Lars Nyland, Jan Prins, Fast N-Body simulation with CUDA, in: GPU Gems
3, NVIDIA, 2007.

[20] I. Lashuk, A. Chandramowlishwaran, H. Langston, T.A. Nguyen, R. Sampath,
A. Shringarpure, R. Vuduc, L.X. Ying, D. Zorin, G. Biros, A massively parallel
adaptive fast multipole method on heterogeneous architectures, Commun.
ACM 55 (5) (2012) 101–109.

[21] Y. Li, H. Liu, I. Rata, E. Jakobsson, Building a knowledge-based statistical po-
tential by capturing high-order inter-residue interactions and its applications
in protein secondary structure assessment, J. Chem. Inf. Model. 53 (2) (2013)
500–508.

[22] Y. Li, W. Zhu, GPU-accelerated multi-scoring functions protein loop structure
modeling, in: 9th IEEE International Workshop on High Performance
Computational Biology, 2010.

[23] G. Marcelli, The role of three-body interactions on the equilibrium and
non-equilibrium properties of fluids from molecular simulation. Swinburne
University of Technology Dissertation, 2001.

[24] G. Marcelli, R.J. Sadus, Molecular simulation of the phase behavior of noble
gases using accurate two-body and three-body intermolecular potentials, J.
Chem. Phys. 111 (4) (1999) 1533–1540.

[25] G.Marcelli, R.J. Sadus, A link between the two-body and three-body interaction
energies of fluids from molecular simulation, J. Chem. Phys. 112 (14) (2000)
6382–6385.

[26] G. Marcelli, B.D. Todd, R.J. Sadus, Beyond traditional effective intermolecular
potentials and pairwise interactions in molecular simulation, in: Computa-
tional Science-Iccs 2002, Pt III, Proceedings, Vol. 2331, 2002, pp. 932–941.

[27] P. Mazumder, Planar decomposition for quadtree data structure, Comput. Vis.
Graph. Image Process. 38 (1987) 258–274.

[28] N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller,
Equation of state calculations by fast computing machines, J. Chem. Phys. 21
(6) (1953) 1087–1092.

[29] NVIDIA: CUDA programming guide version 3.1. In.; 2010.
[30] NVIDIA [http://www.nvidia.com/page/home.html].
[31] M.J. Stock, A. Gharakhani, Toward efficient GPU-accelerated N-body simula-

tions, in: 46th AIAA Aerospace Sciences Meeting and Exhibit, 2008.
[32] L.Wang, R.J. Sadus, Effect of three-body interactions on the vapor–liquid phase

equilibria of binary fluid mixtures, J. Chem. Phys. 125 (7) (2006) 074503.
[33] L. Wang, R.J. Sadus, Influence of two-body and three-body interatomic forces

on gas, liquid, and solid phases, Phys. Rev. E (3) 74 (2 Pt 1) (2006) 021202.
[34] L. Wang, R.J. Sadus, Three-body interactions and solid–liquid phase equilibria:

application of a molecular dynamics algorithm, Phys. Rev. E (3) 74 (3 Pt 1)
(2006) 031203.

[35] A. Yaseen, Y. Li, Accelerating knowledge-based energy evaluation in protein
structure modeling with graphics processing units, J. Parallel Distrib. Comput.
72 (2) (2012) 297–307.

[36] A. Yaseen, Y. Li, Context-based features enhance protein secondary structure
prediction accuracy, J. Chem. Inf. Model. 54 (3) (2014) 992–1002.

[37] G. Zhao, M.B. Carson, H. Lu, Prediction of specific protein–DNA recognition by
knowledge-based two-body and three-body interaction potentials. in: Conf.
Proc. IEEE Eng. Med. Biol. Soc., Vol. 2007, 2007, pp. 5017–5020.

[38] W. Zhu, A. Yaseen, Y. Li, DEMCMC-GPU: An efficient multi-objective
optimization method with GPU acceleration on the fermi architecture, New
Gener. Comput. 29 (2) (2011) 163–184.

Dr. Ashraf Yaseen is an Assistant Professor in the
Department of Electrical Engineering and Computer
Science at Texas A&MUniversity at Kingsville. He received
his B.S. degree in CS from Jordan University of Science
and Technology in 2002, his M.S. degree in CS from
New York Institute of Technology in 2003, and his Ph.D.
degree in CS from Old Dominion University in 2014.
His research interests include Computational Biology and
High Performance Computing.

http://refhub.elsevier.com/S0743-7315(15)00188-4/sbref1
http://refhub.elsevier.com/S0743-7315(15)00188-4/sbref2
http://refhub.elsevier.com/S0743-7315(15)00188-4/sbref3
http://refhub.elsevier.com/S0743-7315(15)00188-4/sbref4
http://refhub.elsevier.com/S0743-7315(15)00188-4/sbref5
http://refhub.elsevier.com/S0743-7315(15)00188-4/sbref6
http://refhub.elsevier.com/S0743-7315(15)00188-4/sbref7
http://www.developer.download.nvidia.com
http://refhub.elsevier.com/S0743-7315(15)00188-4/sbref9
http://refhub.elsevier.com/S0743-7315(15)00188-4/sbref10
http://refhub.elsevier.com/S0743-7315(15)00188-4/sbref11
http://refhub.elsevier.com/S0743-7315(15)00188-4/sbref12
http://refhub.elsevier.com/S0743-7315(15)00188-4/sbref13
http://refhub.elsevier.com/S0743-7315(15)00188-4/sbref14
http://refhub.elsevier.com/S0743-7315(15)00188-4/sbref15
http://refhub.elsevier.com/S0743-7315(15)00188-4/sbref17
http://refhub.elsevier.com/S0743-7315(15)00188-4/sbref19
http://refhub.elsevier.com/S0743-7315(15)00188-4/sbref20
http://refhub.elsevier.com/S0743-7315(15)00188-4/sbref21
http://refhub.elsevier.com/S0743-7315(15)00188-4/sbref24
http://refhub.elsevier.com/S0743-7315(15)00188-4/sbref25
http://refhub.elsevier.com/S0743-7315(15)00188-4/sbref27
http://refhub.elsevier.com/S0743-7315(15)00188-4/sbref28
http://www.nvidia.com/page/home.html
http://refhub.elsevier.com/S0743-7315(15)00188-4/sbref32
http://refhub.elsevier.com/S0743-7315(15)00188-4/sbref33
http://refhub.elsevier.com/S0743-7315(15)00188-4/sbref34
http://refhub.elsevier.com/S0743-7315(15)00188-4/sbref35
http://refhub.elsevier.com/S0743-7315(15)00188-4/sbref36
http://refhub.elsevier.com/S0743-7315(15)00188-4/sbref38


A. Yaseen et al. / J. Parallel Distrib. Comput. 87 (2016) 91–101 101
Hao Ji is a Ph.D. student in the Department of Computer
Science at Old Dominion University, Norfolk, VA, USA.
He received the B.S. degree in Applied Mathematics and
M.S. degree in Computer Science from Hefei University of
Technology, Hefei, China, in 2007 and 2010, respectively.
His research interest include Monte Carlo Methods for
Big Data Analysis, Large-Scale Linear Algebra, and High
Performance Scientific Computing.
Dr. Yaohang Li is anAssociate Professor in theDepartment
of Computer Science at Old Dominion University. His
research interests are in Computational Biology, Monte
Carlo Methods, and Scientific Computing. He received the
Ph.D. and M.S. degrees in Computer Science from the
Florida State University in 2003 and 2000, respectively.
After graduation, he worked at Oak Ridge National
Laboratory as a research associate for a short period of
time. Before joining ODU, he was an associate professor in
the Computer Science Department at North Carolina A&T
State University.


	A load-balancing workload distribution scheme for three-body interaction computation on Graphics Processing Units (GPU)
	Introduction
	GPU-based load-balancing scheme for computing three-body interactions
	Serial implementation
	Rotational symmetry
	Load-balancing workload distribution scheme
	Additional performance improvement implementations on GPU

	Computational results
	Computational results of Axilrod--Teller potential
	Axilrod--Teller potential
	GPU-AxT performance
	Load balancing scheme vs. Direct mapping scheme
	Applications in Monte Carlo and molecular dynamics simulation

	Computational results of context-based secondary structure potential (CSSP)
	Context-based secondary structure potential (CSSP)
	Performance of load-balancing scheme

	Scalability of the load balancing scheme across multiple GPUs

	Conclusions
	Acknowledgments
	References


