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Feature and Nuclear Norm Minimization for
Matrix Completion

Mengyun Yang, Yaohang Li, and Jianxin Wang

Abstract—Matrix completion, whose goal is to recover a matrix from a few entries observed, is a fundamental model behind many
applications. Our study shows that, in many applications, the to-be-complete matrix can be represented as the sum of a low-rank
matrix and a sparse matrix associating with side information matrices. The low-rank matrix depicts the global patterns while the sparse
matrix characterizes the local patterns, which are often described by the side information. Accordingly, to achieve high-quality matrix
completion, we propose a Feature and Nuclear Norm Minimization (FNNM) model. The rationale of FNNM is to employ transductive
completion to generalize the global pattern and inductive completion to recover the local pattern. Alternative minimization algorithm
based on fixed-point iteration is developed to numerically solve the FNNM model. FNNM has demonstrated promising results on a
variety of applications, including movie recommendation, drug-target interaction prediction, and multi-label learning, consistently
outperforming the state-of-the-art matrix completion algorithms.

Index Terms—Matrix completion, nuclear norm minimization, side information, movie recommendation, drug-target interaction
prediction, multi-label learning.
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1 INTRODUCTION

THE matrix completion problem is defined as recover-
ing the missing ones from the observed entries in an

incomplete matrix. In recent years, many machine learning
applications, including computer vision [1], [2], collabora-
tive filtering [3], [4], recommendation systems [5], [6], [7],
multi-class learning [8], [9], [10], and bioinformatics [11],
[12], [13], [14], [15], have benefited from finding solutions
of the matrix completion problem. In the past decade, many
methods have been proposed to solve the matrix completion
problem. In general, these methods can be categorized into
two classes: transductive matrix completion and inductive
matrix completion. Both adopt the low-rank matrix assump-
tion.

Transductive completion assumes that the to-be-
completed matrix is of low-rank. Instead of directly optimiz-
ing the rank function, which is well-known to be NP-hard,
the transductive completion methods [16], [17], [18], [19]
are often relaxed to minimizing the nuclear norm, defined
as the sum of all singular values of a matrix. Theoretical
studies show that nuclear norm is a convex surrogate of the
rank function [20], which enables the design of efficient con-
vex matrix completion algorithms, including Singular Value
Thresholding (SVT) [16], Accelerated Proximal Gradient
(APG) [18], Fixed-Point Continuation (FPC) [17], and many
others. [21], [22], [23] show that nuclear norm minimiza-
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tion can recover a missing matrix perfectly from sufficient
known entries under some general settings. Serving the
purpose of better approximating the rank function, a few
non-convex extensions of the nuclear norm minimization,
including Truncated Nuclear Norm Regularization (TNNR)
[2], Weighted Nuclear Norm Minimization (WNNM) [24],
and joint Schatten p-norm and lp-norm minimization [25],
have also been proposed.

On the other hand, the inductive matrix completion
methods are designed to take advantage of the large amount
of side information about row or column objects often avail-
able in applications. Giving a couple of examples, in movie
recommendation, user profiles and movie descriptions are
provided besides the existing rating matrix; in drug-target
interaction prediction, chemical composition of drugs and
sequence information of target proteins are also available
in addition to the interaction matrix. In particular, the side
information can effectively address the well-known “cold-
start” problem in transductive completion. Inductive com-
pletion models assume a low-rank latent matrix to associate
the side information. [11], [26], [27] address the inductive
matrix completion problem via non-convex matrix factoriza-
tion. [28], [29] propose convex inductive matrix completion
based on nuclear norm minimization. Maxide [28] is devel-
oped to reduce sample complexity and improve scalability
of inductive matrix completion. SIMC [29] focuses on the
interpretability of the interaction matrix connecting side
information.

In many applications, the to-be-complete matrix can be
well approximated as the sum of a low-rank matrix and
a sparse matrix connecting the side information matrices.
Typically, the low-rank matrix represents the global patterns
while the sparse matrix describes the local patterns. Let
us use the user-movie association matrix in movie recom-
mendation as an example. The low-rank part encodes the
general user behaviors, i.e., if the users share similar ratings
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in the past on the same set of movies, then they will likely
rate the other movies similarly. At the same time, each user
has his/her personalized preferences and each movie has its
own uniqueness, which lead to certain sparsity in mapping
users to movies. i.e., classic movies are often favorable to
an elderly user while a child likes cartoon movies. This can
be represented as sparse associations between user features
(such as age) and movie features (such as cartoon and clas-
sic), which in turns results in the sparsity of the association
matrix. The sparse part is correlated to the side information,
which is also adopted in [29] and has demonstrated certain
success. This inspires us to design a matrix completion
model that can recover the global patterns as well as the
local patterns.

In this work, we propose a novel Feature and Nucle-
ar Norm Minimization (FNNM) model, which combines
both transductive and inductive matrix completion. The
fundamental idea of FNNM is to recover the low-rank
part by nuclear norm minimization and the sparse part
by sparse inductive matrix completion integrating side in-
formation. FNNM is able to deal with the extreme cases
when there is scarce observations are available or the side
information is unreliable. An efficient alternative minimiza-
tion algorithm is designed to efficiently solve the FNNM
model. We demonstrate the effectiveness of FNNM in a
variety of applications including movie recommendation,
drug-target interaction prediction, and multi-label learning.
The source code and datasets are freely available at http-
s://github.com/BioinformaticsCSU/FNNM.

The remainder of this paper is organized as follows: We
will give a brief description of related work in section 2. In
section 3, we present our model (FNNM) and optimization
scheme. Experimental results on synthetic and real-world
datasets are analyzed in section 4. The computational time
of different methods are compared in section 5. Finally, we
summarize our conclusions in section 6.

2 RELATED WORK

In this section, we describe six state-of-the-art matrix com-
pletion models, which will be compared with FNNM. By an
abuse of notation, we denote λ as the harmonic parameter
balancing different terms in these models, but it is important
to note that each model has its own preferred λ value.

Singular Value Thresholding algorithm (SVT) [16] solves the
following model

min
X

λ ∥X∥∗ +
1

2
∥X∥2F , subject to PΩ(X) = PΩ(A), (1)

where ∥·∥∗ denotes the nuclear norm, which can lead low-
rank property, ∥·∥F represents Frobenius norm, A is the to-
be-complete matrix, Ω is a set containing the index pairs
(i, j) of all known entries in A, and PΩ(X) is the projection
operator projecting matrix X onto Ω such that

(PΩ(X))ij =

{
Xij , (i, j) ∈ Ω
0, (i, j) /∈ Ω.

The SVT algorithm considers the global pattern of the ma-
trix A, and recovers the missing entries in the matrix by
minimizing the convex nuclear norm.

Fixed-Point Continuation algorithm (FPC) [17] is designed
to address the nuclear norm regularized least squares prob-
lem:

min
X

λ ∥X∥∗ +
1

2
∥PΩ(X)− PΩ(A)∥2F . (2)

Compared to SVT, by putting the constraint term as an error
term to the optimization objective function, FPC is able to
handle noisy matrix completion problem.

Weighted Nuclear Norm Minimization algorithm (WNNM)
[24] minimizes the weighted nuclear norm such that

min
X
∥X∥w,∗ , subject to PΩ(X) = PΩ(A), (3)

where ∥X∥w,∗ =
∑

i |wiσi(X)| is the weighted nuclear
norm and wi is a non-negative weight assigned to singular
value σi(X). The weighted nuclear norm allows flexibility
in optimizing specific singular values.

Inductive Matrix Completion model (IMC) [11] is designed
to incorporate side information as feature matrices U and V
into matrix completion such that

min
M,N

λ(∥M∥2F + ∥N∥2F ) +
1

2

∥∥∥PΩ(UMNTV T )− PΩ(A)
∥∥∥2
F
.

(4)
The interaction matrix that connects U and V is factor-
ized as MNT and is assumed to be low-rank. To ob-
tain a good performance, the feature matrices U and V
should be orthogonal and satisfy the following conditions:
Col(A) ⊂ Col(U), Row(A) ⊂ Col(V ), where Col(·) and
Row(·) represent the column and row space, respectively.

Instead of factorizing the interaction matrix, the speedup
matrix completion with side information model (Maxide) [28]
employs the nuclear norm to regularize the interaction
matrix such that

min
X

λ ∥X∥∗ +
1

2

∥∥∥PΩ(UXV T )− PΩ(A)
∥∥∥2
F
. (5)

The accelerated gradient descent method [30] is used to
achieve fast convergence.

The Sparse Interactive model for Matrix Completion with side
information (SIMC) [29] is formulated as follows:

min
M,N

λ1 ∥M∥∗ + λ2 ∥N∥1 +
1

2

∥∥∥UTNV −M
∥∥∥2
F
,

subject to PΩ(M) = PΩ(A),
(6)

where ∥·∥1 denotes an L1 norm. A linearized alternating
direction method of multipliers (LADMM) algorithm [31] is
employed to solve the SIMC model.

SVT, FPC, and WNNM are transductive matrix com-
pletion methods, which only consider the entries of the
incomplete matrix, while IMC, Maxide, and SIMC are in-
ducitve matrix completion methods, where side informa-
tion is incorporated. In general, the transductive matrix
completion methods suffer from the “cold-start” problem,
i.e., the matrix completion algorithms have difficulty in
handling rows or columns without any previously known
entries. With the help of side information, inductive matrix
completion can be used to address the “cold-start” problem,
but their performance heavily relies on the quality of the
side information.
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3 FNNM MODEL AND OPTIMIZATION

Assuming that the to-be-complete matrix A is composed of
a low-rank part and a sparse part associating with side infor-
mation, representing the global patterns and the local pat-
terns, respectively, in this work, we propose an FNNM mod-
el combining both transductive completion and inductive
completion. The fundamental idea of FNNM is to balance
the global patterns and the local patterns associating with
the side information. More specifically, the FNNM model
attempts to construct a complete matrix of M + UNV T

to approximate A, where matrix M aims at maintaining
low-rank property while N is a sparse interaction matrix
associating the side information matrices U and V . As a
result, the FNNM model is formulated as

min
M,N

λ1 ∥M∥∗+λ2 ∥N∥1+
1

2

∥∥∥PΩ(M + UNV T )− PΩ(A)
∥∥∥2
F
,

(7)
where

∥∥PΩ(M + UNV T )− PΩ(A)
∥∥2
F

is the error term, M
is regularized by a nuclear norm to keep low-rank property,
N is regularized by the L1 norm to maintain sparsity, and λ1

and λ2 are the harmonic parameters to balance the nuclear
norm, L1 norm, and the error term.

At first glance, FNNM is similar to SIMC with both
sparse and low-rank assumption. In fact, they are funda-
mentally different. SIMC assumes that the completed matrix
is low-rank, while at the same time it can be approximated
as the product of a sparse matrix with the side information
matrices. In contrast, our FNNM model assumes that the
completed matrix is not necessarily a low-rank or sparse ma-
trix, but is made up of a low-rank matrix and a sparse matrix
associating with feature matrices. Our analysis shown in
Figure 1 agrees well with our assumptions in a variety of
matrix completion applications. The horizontal axes of the
plots in Figure 1 represent the sparsity of the N̂ , where
N̂ is obtained by sparsifying UTAV under a threshold to
control its sparsity. The vertical axes represent the nuclear
norm of the leftover matrix R when UTAV is removed
from A, i.e., R = PΩ(A − UTAV ). One can find that ∥R∥∗
drops significantly when the sparsity of N̂ reaches ∼ 10%;
however, ∥R∥∗ turns stable when N̂ becomes denser. This
strongly indicates that we can use the sum of a low-rank
matrix (or a matrix with small nuclear norm value) and a
sparse matrix interacting with side information. It is also
interesting to notice that, when λ2 in SIMC (6) and FNNM
(7) tends to be positive infinity and N is forced to be 0, SIMC
degenerates to the SVT model (1) while FNNM degenerates
to the FPC model (2). As discussed in section 2, FPC is
capable of handling noisy data by relaxing the constraint
term to an error term in the objective function and hence
FNNM inherits the robustness of FPC.

On the one hand, the transductive completion methods
recover the matrix solely based on observations, which have
difficulty in dealing with the “cold-start” problem. On the
other hand, the inductive completion methods mainly rely
on the side information, which can be misled when the
features in the side information are noisy. FNNM has the
advantage of balancing transductive and inductive matrix
completion methods to generate high-quality completed
matrix.
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Fig. 1. Sparsity and low-rank properties of to-be-complete matrices in
applications of (a) movie recommendation, (b) drug-target interaction
prediction, and (c) multi-label learning.
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To solve the optimization problem (7) in the FNNM
model, we propose an alternative minimization scheme. At
each iteration, we fix N and apply a fixed-point iterative
method for nuclear norm minimization [17] to obtain M .
Then, we fix M alternatively and apply the fixed-point
iterative method for L1 norm minimization [32] to solve N .
The alternative minimization scheme includes the steps of
computing Mk+1 and Nk+1:

• Computing Mk+1: Fixing Nk to solve min
M

λ1 ∥M∥∗ +

1
2

∥∥PΩ(M + UNkV
T )− PΩ(A)

∥∥2
F
. Since this objective

function is convex, M∗ is the optimal solution if and only if

0 ∈ λ1∂ ∥M∗∥∗ + PΩ(M
∗ + UNkV

T )− PΩ(A). (8)

(8) is equivalent to

0 ∈ λ1µ1∂ ∥M∗∥∗+M∗−(M∗−µ1PΩ(M
∗+UNkV

T −A)),
(9)

for any µ1 > 0. We set Ek = M∗−µ1PΩ(M
∗+UNkV

T−A)
and then (9) is reduced to

0 ∈ λ1µ1∂ ∥M∗∥∗ +M∗ − Ek.

Clearly, M∗ is the optimal solution of min
M

λ1µ1 ∥M∥∗ +

1
2 ∥M − Ek∥2F . The fixed-point iterative scheme for
computing Mk+1 is derived as{

Ek = Mk − µ1PΩ(Mk + UNkV
T −A)

Mk+1 = Dλ1µ1(Ek).
(10)

Here Dτ (X) is the singular value shrinkage operator [16],
[17] on matrix X defined as

Dτ (X) =
σi≥τ∑
i=1

(σi − τ)uiv
T
i ,

where σi is the ith singular values of X larger than threshold
τ , while ui and vi are the left and right singular vectors
corresponding to σi, respectively.
• Computing Nk+1: Fixing Mk+1 to solve Nk+1.

N∗ is the optimal solution to min
N

λ2 ∥N∥1 +

1
2

∥∥PΩ(Mk+1 + UNV T )− PΩ(A)
∥∥2
F

, if and only if

0 ∈ λ2∂ ∥N∗∥1 + UTPΩ(Mk+1 + UN∗V T −A)V.

The above formula is equivalent to

0 ∈λ2µ2∂ ∥N∗∥1 +N∗ − (N∗ − µ2U
TPΩ(Mk+1

+ UN∗V T −A)V )
(11)

for any µ2 > 0. We set Fk = N∗ − µ2U
TPΩ(Mk+1 +

UN∗V T −A)V and then (11) becomes

0 ∈ λ2µ2∂ ∥N∗∥1 +N∗ − Fk.

N∗ is the optimal solution of

min
N

λ2µ2 ∥N∥1 +
1

2
∥N − Fk∥2F .

As a result, the fixed-point iterative scheme for computing
Nk+1 becomes:{

Fk = Nk − µ2U
TPΩ(Mk+1 + UNkV

T −A)V
Nk+1 = Sλ2µ2(Fk).

(12)

Here Sτ (X) is the shrinkage operator [33], [34] on matrix X
with respect to threshold τ defined as

(Sτ (X))ij = max{|Xij | − τ, 0} · sign(Xij),

where sign(·) is the sign function.
Putting all pieces together, the whole procedure of opti-

mizing FNNM model is summarized in Algorithm 1. Fur-
thermore, the convergence of this algorithm is justified by
analysis in [17] and [33], since model (7) is convex.

Algorithm 1: FNNM Algorithm

Input: The target matrix PΩ(A), feature matrices U ,
V , parameters λ1, and λ2.

Output: M and N .
1 initialize M1 = 0, N1 = 0, µ1 = µ2 = 0.1, k = 1;
2 while not converged do
3 Ek ←Mk − µ1PΩ(Mk + UNkV

T −A);
4 Mk+1 ← Dλ1µ1(Ek);
5 Fk ← Nk − µ2U

TPΩ(Mk+1 + UNkV
T −A)V ;

6 Nk+1 ← Sλ2µ2(Fk);
7 k ← k + 1;
8 end
9 M ←Mk, N ← Nk;

10 return M and N .

4 EXPERIMENTAL RESULTS

We demonstrate the effectiveness of FNNM for matrix com-
pletion on both synthetic experiments and real-world appli-
cations, which include movie recommendation, drug-target
interaction prediction, and multi-label learning. FNNM is
compared with six state-of-the-art matrix completion meth-
ods including SVT [16], FPC [17], WNNM [24], IMC [11],
Maxide [28], and SIMC [29]. To ensure a fair comparison,
the parameters including λ1, λ2 in SIMC and FNNM, λ, δ in
SVT and FPC, and λ in WNNM, Maxide, and IMC, are set
by grid search from {10−3, 10−2, . . . , 102, 103}. For IMC, the
best rank of M or N is choosen from {0.1, 0.3, 0.5, 0.7, 0.9}∗
min(size(A)). The FNNM algorithm is terminated when
the following stopping criterion is satisfied,∥∥(Mk+1 + UNk+1V

T )− (Mk + UNkV
T )

∥∥
F

∥Mk + UNkV T ∥F
≤ tol, (13)

where tol is a given tolerance set as 10−4. µ1 and µ2 in
FNNM model are both set to 0.1 in computation on all
datasets. All experimental results have been obtained on a
Linux server with CPU 2.60 GHz and 1 T memory.

Synthetic experiments. The real-life datasets, in gen-
eral, is noisy and with low sampling rate. For example,
in movie recommendation, the rating matrix is so sparse
and low sampling rate since most users watch and rate
only a small portion of the movie. Additionally, the rating
matrix may contain some artificial noise information, which
makes the rank of the matrix raise. Therefore, we attempt to
simulate the matrices with noise and low sampling rate in
synthetic experiments. We generate two random matrices
P ∈ IR150×50 and Q ∈ IR200×50 with each component
Pij , Qij drawn independently fromN (0, 1), and then create
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a low-rank matrix T = PQT . The noise matrix E is drawn
elementwisely from N (0, 1). In order to fully illustrate the
impact of noise in both transductive and inductive matrix
completion, we add noise on observation and side informa-
tion such that T ← T +E , P ← P +E , and Q← Q+E . The
side feature matrices U and V are obtained by applying QR
decomposition to noisy P and Q, respectively. The sampling
rate of a matrix, sr, is the ratio of the observed entries with
respect to all components in T and the noise rate, nr , is
the proportion of the contaminated entries among all com-
ponents. To evaluate the performance of all methods under
different sampling rates and noise rates, we iteratively set
sr ∈ [0.05, 0.5] and nr ∈ [0, 0.5] with a gradually increasing
step of 0.05.

All known entries of matrix T are divided into two parts:
one containing the selected observed entries treated as the
training set while the other composed of the remaining
elements considered as the test set. The relative error on the
test set is used to measure the performance of all methods,
which is defined as

Relative error =
∥PΩ̃(T −B)∥

F

∥PΩ̃(T )∥F
, (14)

where B is a completed matrix from an observed matrix,
and Ω̃ is the set of indices of the test set. For all models
used for comparison, we randomly pick 10% of the known
elements from the training set to form a validation set in
order to identify the optimal model parameters by grid
search. After determining the optimal model parameters, we
repeat each trials five times and report the average relative
error as the final result.

We compare the performance of various matrix com-
pletion methods under gradually increasing sampling rates
when a specific noise rate is given. We choose three noise
rates {0.05(low), 0.25(medium), 0.5(high)} to conduct ma-
trix completion, whose results are depicted in Figures 2(a)-
(c), respectively. Without surprise, all methods can reduce
the relative error gradually by increasing sampling rates.
However, it is interesting to find that, when the sampling
rate is low (< 25%), the known matrix entries are too scarce
to recover the whole matrix and thus the side information
plays a more important role in predicting the unknown. As
a result, the models (IMC, Maxide, and FNNM) taking ad-
vantage of side information outperforms those transductive
models such as SVT, WNNM, and FPC. The only exception
is SIMC. Although side information is used, SIMC attempts
to minimize the difference between the inductive part and
the transductive part, which yields similar performance as
the other transductive models. Compared to IMC, a non-
convex model which may lead to solutions at local minima,
the convex models of Maxide and FNNM result in solutions
with better accuracy. When the sampling rate is higher
and more known entries become available, the transductive
models are able to come up with recovered matrices in better
quality and therefore their performance starts to catch up
and surpass IMC and later Maxide, which use side infor-
mation only. Due to its nature of balancing the inductive
and transductive parts, FNNM yields better accuracy in
most cases under different noise rates and sampling rates
compared to the other models.
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Fig. 2. The performance of all methods in matrix completion under
various noise rates. (a) nr = 0.05. (b) nr = 0.25. (c) nr = 0.5.
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Fig. 3. The comparison of RMSE values of all methods on MovieLens.

Movie recommendation. A MovieLens dataset (100K)
is downloaded from [35], which contains 100, 000 ratings
(integers ranging from 1 to 5 ) from 943 users and 1, 682
movies. The dataset contains 23 user features (age, gender,
occupation, etc.) and 20 movie features (genre, release date,
etc.). We denote skr as the sampling rate on known ratings
and set skr ∈ [0.1, 0.9] with an incremental step of 0.2.
Then, all known entries of rating matrix are divided into
a training set with 100, 000skr ratings and a test set with
100, 000(1 − skr) ratings. The training set and the test set
are not overlapping. Root Mean Square Error (RMSE) on
the test set is used to measure the performance of different
methods, which is defined as

RMSE =
∥PΩ̃(A−B)∥

F√
|Ω̃|

, (15)

where A is the original rating matrix, B is the completed
matrix, and Ω̃ is the set of indices in the test set. For each
method, we randomly picked 10% of the known elements
out of the training set to form a validation set to determine
the optimal parameters. We repeat each trial five times and
report the average RMSE on the test set as the final result.
The comparison of RMSE values of all methods with respect
to sampling rates on MovieLens is illustrated in Figure 3.
It is interesting to find that, in the movie recommendation
problem, the inductive models (IMC and Maxide) using side
information only are able to capture the mapping between
side information of users and movies with small number of
data samples. Increasing the number of data samples does
not lead to significant accuracy improvement. In contrast,
models involving transductive completion benefit from
more data samples. After all, FNNM shows its advantage of
integrating inductive and transductive completions, which
consistently yields the lowest RMSE values compared to the
other models in situations where the sampling rates range
from low to high.

Drug-target interaction prediction. Four gold standard
datasets (Nuclear Receptors, G-Protein-Coupled Receptors

(GPCRs), Ion Channels, and Enzymes) of drug-target inter-
actions are downloaded from [36]. The data statistics for
drugs, target proteins, and their interactions are summa-
rized in Table 1. Different from the movie recommendation
problem, the datasets in drug-target interaction prediction
contain positive samples only. The side information is ob-
tained based on drug similarity and target similarity. Drug
similarity is calculated by using SIMCOMP [37] according to
the inherent chemical structures in drugs. Target similarity
is computed by using a normalized Smith-Waterman score
[38] with respect to the protein sequences. We apply Singu-
lar Value Decomposition (SVD) to extract the primary drug
and target feature vectors from drug similarity matrix (Ds)
and target similarity matrix (Ts), respectively. The numbers
of drugs’ primary feature vectors are determined by using
the dominant energy strategy [13]. More specifically, let
UdΣdV

T
d be the SVD of Ds. Then, the number of drugs’

primary feature vectors is determined by

Ld = argmin
x
{
∑x

i=1 σi∑
i
σi
≥ 0.9}, (16)

where σi is the ith largest singular value of Ds. Afterwards,
{U1, U2, ..., ULd

} are extracted as the drug features. The
target feature vectors are obtained in a similar manners.

Table 2 lists the AUC (Area Under the ROC Curve)
values of the seven matrix completion methods in a 10-
fold cross-validation. As shown in the Table 1, the sampling
rate is small (< 10%) in these four datasets. More severely,
some drugs or targets are new without any previously
known associations, which presents a “cold-start” challenge
to transductive completion methods. As a result, transduc-
tive completion models (SVT, FPC, and WNNM) have lower
AUC values than those of the inductive models (IMC and
Maxide). Similar to the situations in the synthetic experi-
ments when the sampling rate is low, FNNM and Maxide
yield the highest and second highest AUC values in all four
datasets, respectively. However, in drug-target interaction
prediction, one is usually not interested in how the model
performs on the negative class; instead, precision and recall
of every positive prediction are more important metrics.
Therefore, we also evaluate the matrix completion models
using the AUPR values (Area Under Precision-Recall curve),
which are particularly effective in the case where there are
significantly more negative data samples than the positive
ones. The AUPR results are listed in Table 3. It is interesting
to note that Maxide loses its second position to the other
models, indicating that its high AUC values come along
with high false negative rates. FNNM still yields the highest
AUPR values among all models in all four datasets, demon-
strating that it is also an effective method in bioinformatics
association prediction applications.

Multi-label learning. We compare the performance of
FNNM with six matrix completion models in multi-label
learning. We use eleven datasets from “yahoon.com” [39] for
web page classification, including ‘Arts,’ ‘Business,’ ‘Com-
puters,’ ‘Education,’ ‘Entertainment,’ ‘Health,’ ‘Recreation,’
‘Reference,’ ‘Science,’ and ‘Social.’ For ’Arts’ dataset, the
number of its instances, dimensions, and lables are 5, 000,
462, and 26, respectively. We randomly pick 10% instances
as the test set and use the rest 90% as the training set.
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TABLE 1
Statistics for four gold standard datasets of drug-target interaction

Statistics Enzymes Ion Channels GPCRs Nuclear Receptors

No. of drugs 445 210 223 54
No. of target proteins 664 204 95 26

No. of interactions 2926 1476 635 90
Sampling rate 0.990% 3.445% 2.997% 6.410%

TABLE 2
AUC scores of FNNM and the competing methods in 10-fold cross-validation

Datasets SVT FPC WNNM IMC Maxide SIMC FNNM

Nuclear
Receptors

0.6630
(±0.0307)

0.6670
(±0.0163)

0.6672
(±0.0193)

0.8028
(±0.0198)

0.8345
(±0.0031)

0.8238
(±0.0073)

0.8464
(±0.0076)

GPCRs 0.8505
(±0.0012)

0.8524
(±0.0037)

0.8516
(±0.0081)

0.9017
(±0.0032)

0.9116
(±0.0036)

0.8087
(±0.0060)

0.9401
(±0.0028)

Ion Channels 0.9386
(±0.0028)

0.9365
(±0.0015)

0.9376
(±0.0033)

0.9391
(±0.0024)

0.9532
(±0.0014)

0.8790
(±0.0033)

0.9736
(±0.0012)

Enzymes 0.8962
(±0.0017)

0.8953
(±0.0007)

0.8913
(±0.0012)

0.9354
(±0.0011)

0.9446
(±0.0014)

0.8818
(±0.0021)

0.9650
(±0.0008)

Best AUC result in each row is bold and second best result is underline.

TABLE 3
AUPR scores of FNNM and the competing methods in 10-fold cross-validation

Datasets SVT FPC WNNM IMC Maxide SIMC FNNM

Nuclear
Receptors

0.2737
(±0.0291)

0.2633
(±0.0195)

0.2320
(±0.0086)

0.4374
(±0.0176)

0.3157
(±0.0153)

0.3178
(±0.0209)

0.4445
(±0.0103)

GPCRs 0.5940
(±0.0059)

0.6238
(±0.0063)

0.4626
(±0.0150)

0.5292
(±0.0031)

0.3773
(±0.0054)

0.2748
(±0.0107)

0.6757
(±0.0120)

Ion Channels 0.8478
(±0.0027)

0.8472
(±0.0006)

0.7855
(±0.0042)

0.6833
(±0.0032)

0.5325
(±0.0047)

0.3348
(±0.0146)

0.8732
(±0.0020)

Enzymes 0.7761
(±0.0027)

0.7764
(±0.0026)

0.7159
(±0.0045)

0.7626
(±0.0036)

0.6601
(±0.0021)

0.5165
(±0.0022)

0.8470
(±0.0023)

Best AUPR result in each row is bold and second best result is underline.

To conduct partial label assignment in the training set, for
each label, we randomly choose ω% positive and negative
training instances and keep the remaining training instances
unknown. The percentage of training instances ω% ranges
from 10% to 90% with an increasing step size of 20%. We
use Average Precision (AP) [28], [40] on all the data as
the evaluation metric. Each computation is repeated five
times and the average score is reported in Table 4. In the
55 comparison cases, FNNM achieves the best AP for 36
cases and the second best AP for 11 cases, while Maxide and
SIMC get the best AP for 14 cases and 1 case, respectively.
This also shows the effectiveness of FNNM on multi-label
learning.

FNNM is a computational method designed to balance
the global pattern and the local pattern. The global pattern
depends on the quantity of known entries while the local
pattern relies on the quality of side information. General-
ly, FNNM does not perform well in multi-label learning
datasets with extremely low rate of positive samples, due
to the fact that the global pattern retrieved from insuf-
ficient entries is highly noisy, which contributes little to
the predictions. Considering the Business dataset as an
example, the positive samples rate is only 0.49% when
we set ω = 10%. This is also confirmed by comparing

the transductive approaches (e.g., SVT) with the inductive
methods (e.g., Maxide). One can find that Maxide signif-
icantly outperforms SVT, since side information used in
the inductive methods plays a much more important role
for prediction when insufficient entries are known in the
association matrix. Therefore, the global pattern contributes
very little compared to the local pattern in this situation. As
a result, when there are extremely insufficient samples in the
association matrix, the inductive methods, such as Maxide,
completely relying on the side information, may yield better
prediction results than FNNM. Nevertheless, when more
samples are available in the association matrix and the
extracted global patterns starts to contribute, FNNM, with
the advantage of leveraging both global patterns and local
patterns, will become more effective, as we show in the
results on the other datasets with more samples available
in the association matrix.

5 COMPUTATION TIME COMPARISONS

We have compared the computational time of different
methods on the datasets of MovieLens 100K, Ion Channels,
and Arts. Table 5 compares the averaged execution time
of various matrix completion algorithms when less than
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TABLE 4
AP scores of FNNM and the competing models on incomplete multi-label learning.

Dataset ω SVT FPC WNNM IMC Maxide SIMC FNNM

ω% = 10%
0.3300

(±0.0294)
0.3378

(±0.0025)
0.3370

(±0.0027)
0.4825

(±0.0032)
0.5372

(±0.0057)
0.2888

(±0.0333)
0.4991

(±0.0111)

ω% = 30%
0.4723

(±0.0174)
0.4921

(±0.0031)
0.4860

(±0.0035)
0.6066

(±0.0046)
0.6341

(±0.0028)
0.5471

(±0.0205)
0.6990

(±0.0045)

Arts ω% = 50%
0.6187

(±0.0249)
0.6353

(±0.0021)
0.6236

(±0.0030)
0.6574

(±0.0021)
0.6797

(±0.0015)
0.6663

(±0.0075)
0.7720

(±0.0013)

ω% = 70%
0.7473

(±0.0110)
0.7645

(±0.0033)
0.7567

(±0.0021)
0.6894

(±0.0016)
0.7082

(±0.0020)
0.7131

(±0.0120)
0.8531

(±0.0032)

ω% = 90%
0.8709

(±0.0091)
0.8742

(±0.0028)
0.8720

(±0.0013)
0.7123

(±0.0018)
0.7236

(±0.0009)
0.7503

(±0.0082)
0.9267

(±0.0010)

ω% = 10%
0.4986

(±0.0148)
0.8444

(±0.0064)
0.8329

(±0.0033)
0.7429

(±0.0035)
0.8639

(±0.0025)
0.8736

(±0.0030)
0.8446

(±0.0053)

ω% = 30%
0.5707

(±0.0859)
0.8898

(±0.0021)
0.8533

(±0.0026)
0.8299

(±0.0030)
0.8744

(±0.0006)
0.9043

(±0.0009)
0.8896

(±0.0026)

Business ω% = 50%
0.6892

(±0.0329)
0.9235

(±0.0014)
0.8881

(±0.0044)
0.8501

(±0.0013)
0.8838

(±0.0020)
0.9153

(±0.0264)
0.9223

(±0.0018)

ω% = 70%
0.7740

(±0.0463)
0.9512

(±0.0020)
0.9246

(±0.0038)
0.8559

(±0.0010)
0.8913

(±0.0009)
0.9447

(±0.0052)
0.9480

(±0.0017)

ω% = 90%
0.9090

(±0.0043)
0.9712

(±0.0021)
0.9635

(±0.0016)
0.8587

(±0.0005)
0.8975

(±0.0005)
0.9455

(±0.0028)
0.9669

(±0.0014)

ω% = 10%
0.3294

(±0.0552)
0.5421

(±0.0009)
0.5387

(±0.0027)
0.5412

(±0.0061)
0.6341

(±0.0079)
0.6154

(±0.0161)
0.5431

(±0.0121)

ω% = 30%
0.4502

(±0.0312)
0.6510

(±0.0014)
0.6348

(±0.0024)
0.6745

(±0.0032)
0.7180

(±0.0033)
0.7150

(±0.0048)
0.7190

(±0.0032)

Computers ω% = 50%
0.5968

(±0.0193)
0.7481

(±0.0017)
0.7308

(±0.0023)
0.7370

(±0.0054)
0.7674

(±0.0029)
0.7813

(±0.0015)
0.8100

(±0.0014)

ω% = 70%
0.7040

(±0.0327)
0.8331

(±0.0042)
0.8232

(±0.0009)
0.7745

(±0.0026)
0.7940

(±0.0012)
0.8383

(±0.0076)
0.8828

(±0.0026)

ω% = 90%
0.8671

(±0.0054)
0.9063

(±0.0020)
0.9078

(±0.0019)
0.8012

(±0.0010)
0.8105

(±0.0008)
0.8959

(±0.0036)
0.9426

(±0.0015)

ω% = 10%
0.3291

(±0.0336)
0.3637

(±0.0022)
0.3637

(±0.0014)
0.4923

(±0.0073)
0.5536

(±0.0057)
0.5223

(±0.0090)
0.5053

(±0.0034)

ω% = 30%
0.4819

(±0.0360)
0.5105

(±0.0028)
0.4973

(±0.0025)
0.6094

(±0.0053)
0.6465

(±0.0034)
0.6320

(±0.0098)
0.6760

(±0.0047)

Education ω% = 50%
0.6075

(±0.0148)
0.6424

(±0.0023)
0.6271

(±0.0026)
0.6697

(±0.0020)
0.6964

(±0.0018)
0.7156

(±0.0037)
0.7718

(±0.0022)

ω% = 70%
0.7529

(±0.0137)
0.7659

(±0.0008)
0.7549

(±0.0017)
0.7070

(±0.0016)
0.7244

(±0.0016)
0.7879

(±0.0113)
0.8565

(±0.0029)

ω% = 90%
0.8747

(±0.0065)
0.8698

(±0.0014)
0.8731

(±0.0010)
0.7312

(±0.0017)
0.7431

(±0.0013)
0.8466

(±0.0048)
0.9281

(±0.0022)

ω% = 10%
0.3321

(±0.0221)
0.3325

(±0.0023)
0.3304

(±0.0022)
0.5414

(±0.0101)
0.6210

(±0.0066)
0.5218

(±0.0108)
0.5430

(±0.0067)

ω% = 30%
0.5026

(±0.0315)
0.4777

(±0.0026)
0.4704

(±0.0017)
0.6625

(±0.0040)
0.7002

(±0.0021)
0.6979

(±0.0067)
0.7086

(±0.0026)

Entertainment ω% = 50%
0.6178

(±0.0203)
0.6164

(±0.0032)
0.6038

(±0.0020)
0.7233

(±0.0033)
0.7537

(±0.0017)
0.7907

(±0.0065)
0.8015

(±0.0021)

ω% = 70%
0.7447

(±0.0203)
0.7462

(±0.0022)
0.7392

(±0.0042)
0.7626

(±0.0004)
0.7801

(±0.0014)
0.8541

(±0.0046)
0.8726

(±0.0028)

ω% = 90%
0.8651

(±0.0065)
0.8690

(±0.0024)
0.8654

(±0.0012)
0.7896

(±0.0022)
0.7976

(±0.0013)
0.9040

(±0.0036)
0.9383

(±0.0019)

ω% = 10%
0.4210

(±0.0351)
0.4495

(±0.0035)
0.4427

(±0.0051)
0.5889

(±0.0028)
0.7074

(±0.0032)
0.6698

(±0.0069)
0.6099

(±0.0091)

ω% = 30%
0.5259

(±0.0452)
0.5952

(±0.0025)
0.5779

(±0.0018)
0.7260

(±0.0049)
0.7773

(±0.0030)
0.7654

(±0.0054)
0.7714

(±0.0031)

Health ω% = 50%
0.6349

(±0.0401)
0.7179

(±0.0020)
0.6983

(±0.0048)
0.7879

(±0.0028)
0.8203

(±0.0011)
0.7736

(±0.1211)
0.8531

(±0.0011)

ω% = 70%
0.7603

(±0.0220)
0.8190

(±0.0016)
0.8019

(±0.0032)
0.8238

(±0.0014)
0.8419

(±0.0008)
0.8706

(±0.0075)
0.9072

(±0.0018)

ω% = 90%
0.8666

(±0.0077)
0.8996

(±0.0013)
0.8814

(±0.0052)
0.8445

(±0.0011)
0.8550

(±0.0008)
0.9219

(±0.0030)
0.9570

(±0.0022)
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ω% = 10%
0.3259

(±0.0106)
0.3646

(±0.0027)
0.3670

(±0.0017)
0.4835

(±0.0055)
0.5582

(±0.0035)
0.4211

(±0.0274)
0.4930

(±0.0086)

ω% = 30%
0.4246

(±0.0136)
0.5048

(±0.0018)
0.5022

(±0.0015)
0.6209

(±0.0050)
0.6582

(±0.0026)
0.5997

(±0.0085)
0.6679

(±0.0015)

Recreation ω% = 50%
0.5775

(±0.0081)
0.6370

(±0.0024)
0.6282

(±0.0008)
0.6873

(±0.0034)
0.7142

(±0.0033)
0.7094

(±0.0069)
0.7713

(±0.0025)

ω% = 70%
0.7250

(±0.0119)
0.7604

(±0.0008)
0.7574

(±0.0022)
0.7268

(±0.0018)
0.7488

(±0.0022)
0.7822

(±0.0053)
0.8549

(±0.0012)

ω% = 90%
0.8430

(±0.0031)
0.8753

(±0.0028)
0.8741

(±0.0010)
0.7541

(±0.0011)
0.7675

(±0.0008)
0.8347

(±0.0042)
0.9282

(±0.0014)

ω% = 10%
0.3280

(±0.0737)
0.3296

(±0.0008)
0.3296

(±0.0002)
0.5313

(±0.0025)
0.6522

(±0.0076)
0.5862

(±0.0053)
0.5390

(±0.0071)

ω% = 30%
0.4835

(±0.0389)
0.4623

(±0.0016)
0.4606

(±0.0012)
0.6749

(±0.0055)
0.7271

(±0.0019)
0.6911

(±0.0033)
0.7144

(±0.0026)

Reference ω% = 50%
0.6132

(±0.0208)
0.5952

(±0.0015)
0.5933

(±0.0015)
0.7476

(±0.0026)
0.7833

(±0.0026)
0.7757

(±0.0024)
0.8079

(±0.0022)

ω% = 70%
0.7448

(±0.0050)
0.7299

(±0.0019)
0.7279

(±0.0017)
0.7896

(±0.0023)
0.8116

(±0.0020)
0.8506

(±0.0015)
0.8814

(±0.0028)

ω% = 90%
0.8625

(±0.0134)
0.8623

(±0.0009)
0.8599

(±0.0003)
0.8205

(±0.0017)
0.8334

(±0.0014)
0.9205

(±0.0032)
0.9427

(±0.0010)

ω% = 10%
0.2729

(±0.0185)
0.2519

(±0.0006)
0.2519

(±0.0015)
0.4400

(±0.0050)
0.5343

(±0.0074)
0.4028

(±0.0198)
0.4377

(±0.0063)

ω% = 30%
0.4174

(±0.0366)
0.4218

(±0.0023)
0.4188

(±0.0011)
0.5901

(±0.0037)
0.6376

(±0.0031)
0.5837

(±0.0148)
0.6368

(±0.0038)

Science ω% = 50%
0.5857

(±0.0194)
0.5780

(±0.0019)
0.5732

(±0.0018)
0.6672

(±0.0041)
0.7016

(±0.0013)
0.6900

(±0.0066)
0.7501

(±0.0024)

ω% = 70%
0.7286

(±0.0133)
0.7231

(±0.0030)
0.7203

(±0.0025)
0.7159

(±0.0030)
0.7413

(±0.0023)
0.7895

(±0.0067)
0.8434

(±0.0023)

ω% = 90%
0.8606

(±0.0050)
0.8555

(±0.0007)
0.8541

(±0.0021)
0.7523

(±0.0006)
0.7656

(±0.0016)
0.8583

(±0.0024)
0.9230

(±0.0021)

ω% = 10%
0.3682

(±0.0471)
0.2123

(±0.0015)
0.2124

(±0.0011)
0.5548

(±0.0096)
0.7299

(±0.0030)
0.6595

(±0.0140)
0.5904

(±0.0066)

ω% = 30%
0.5035

(±0.0341)
0.3791

(±0.0021)
0.3763

(±0.0015)
0.7076

(±0.0047)
0.7856

(±0.0028)
0.7423

(±0.0062)
0.7581

(±0.0034)

Social ω% = 50%
0.6377

(±0.0197)
0.5420

(±0.0012)
0.5338

(±0.0022)
0.7906

(±0.0031)
0.8361

(±0.0032)
0.8088

(±0.0034)
0.8435

(±0.0036)

ω% = 70%
0.7560

(±0.0186)
0.6987

(±0.0012)
0.6911

(±0.0014)
0.8400

(±0.0007)
0.8680

(±0.0008)
0.8578

(±0.0125)
0.9034

(±0.0012)

ω% = 90%
0.8687

(±0.0127)
0.8433

(±0.0012)
0.8405

(±0.0007)
0.8748

(±0.0016)
0.8880

(±0.0009)
0.9022

(±0.0054)
0.9551

(±0.0015)

ω% = 10%
0.3203

(±0.0716)
0.2409

(±0.0024)
0.2404

(±0.0016)
0.5034

(±0.0026)
0.5661

(±0.0037)
0.5598

(±0.0043)
0.5115

(±0.0042)

ω% = 30%
0.4498

(±0.0507)
0.4155

(±0.0030)
0.4003

(±0.0015)
0.6286

(±0.0039)
0.6567

(±0.0025)
0.6607

(±0.0065)
0.6778

(±0.0063)

Society ω% = 50%
0.6007

(±0.0402)
0.5742

(±0.0024)
0.5521

(±0.0042)
0.6863

(±0.0027)
0.7120

(±0.0023)
0.7260

(±0.0066)
0.7756

(±0.0023)

ω% = 70%
0.7225

(±0.0099)
0.7162

(±0.0033)
0.7041

(±0.0015)
0.7283

(±0.0032)
0.7432

(±0.0018)
0.7663

(±0.0088)
0.8552

(±0.0036)

ω% = 90%
0.8693

(±0.0094)
0.8423

(±0.0019)
0.8467

(±0.0020)
0.7555

(±0.0013)
0.7633

(±0.0014)
0.7984

(±0.0122)
0.9299

(±0.0035)

Best AP result in each row is bold and second best result is underline.

1% relative errors are reached. One can find that FNNM
has better computational efficiency than SVT, Maxide, and
SIMC on small matrices such as Ion Channels and Arts.
On a bigger dataset such as MovieLens 100K, FNNM is
more computationally efficient compared to SIMC and FPC.
In fact, the computational time of a matrix completion
algorithm depends on the nature of the application matrices,
the model hyperparameters, the computer architectures, as
well as the anticipated precision.

6 CONCLUSIONS

In this study, we propose an FNNM model for matrix
completion, assuming that the to-be-complete matrix can
be well approximated as the sum of a low-rank matrix
and a sparse matrix associating with the side information
matrices. The low-rank matrix represents the global patterns
while the sparse matrix describes the local patterns mapping
the side information. FNNM model is designed to balance
the transductive matrix completion for global patterns and
inductive matrix completion for local patterns, which can
be efficiently solved by an alternative minimization scheme
using fixed-point iterations. Compared with several state-
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TABLE 5
The averaged execution time of various matrix completion algorithms to reach 1% relative error

Time(s) SVT FPC WNMM IMC Maxide SIMC FNNM

MovieLens 100K 1.86 24.23 15.59 0.08 1.05 26.07 18.07
Ion Channels 0.61 0.66 0.44 0.13 3.73 15.48 0.22

Arts 1.43 0.02 0.16 0.19 1.12 26.81 0.74

of-the-art matrix completion models, FNNM consistently
demonstrates better performance, measured by different
evaluation metrics, in synthetic experiments as well as real-
world applications. However, there are two limitations in
FNNM. First, it is not convenient to determine its parame-
ters, where one is not able to choose the optimal parameters
in advance, nor can one determine them adaptively. Second,
FNNM relies on SVD algorithm to carry out its optimization.
Although there are fast SVD approximation algorithms [41]
available, handling extremely large-scale matrices is still
time-consuming.
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