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Abstract 

In this paper, we present a GPU-accelerated 

implementation of randomized Singular Value 

Decomposition (SVD) algorithm on a large matrix to 

rapidly approximate the top-𝑘 dominating singular values 

and correspondent singular vectors. The fundamental idea 

of randomized SVD is to condense a large matrix into a 

small dense matrix by random sampling while keeping the 

important information. Then performing traditional 

deterministic SVD on this small dense matrix reveals the 

top- 𝑘  dominating singular values/singular vectors 

approximation. The randomized SVD algorithm is 

suitable for the GPU architecture; however, our study 

finds that the key bottleneck lies on the SVD computation 

of the small matrix. Our solution is to modify the 

randomized SVD algorithm by applying SVD to a derived 

small square matrix instead as well as a hybrid GPU-CPU 

scheme. Our GPU-accelerated randomized SVD 

implementation is around 6~7 times faster than the 

corresponding CPU version. Our experimental results 

demonstrate that the GPU-accelerated randomized SVD 

implementation can be effectively used in image 

compression. 
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1. Introduction 

A factorization of a real matrix 𝐴 ∈ ℝ𝑚∗𝑛   is singular 

value decomposition (SVD) if 

𝐴 = 𝑈 ∗ 𝛴 ∗ 𝑉𝑇 

where 𝑈 ∈ ℝm∗m  and 𝑉 ∈ ℝn∗n are matrices with 

orthonormal columns,  𝛴 ∈ ℝm∗n  is a diagonal matrix 

whose elements, 𝜎1,  𝜎2, … , 𝜎𝑛, are nonnegative singular 

values in non-decreasing order. SVD plays an important 

role in a wide range of modeling and simulation 

applications, such as modeling of genome-wide 

expression data [1], large-scale atmosphere-ocean 

interaction analysis [2], data-unfolding in high energy 

physics [3], recommendation engine in social network 

modeling [4] and simulations with MRI data [5], etc.  One 

primary advantage of using SVD is that the low rank 

approximation 𝐴𝑘 to matrix 𝐴 with rank 𝑘 can be readily 

formed as 

𝐴𝑘 = 𝑀 ∗  𝑁 

where 𝑀  is an 𝑚 ∗  𝑘  matrix and 𝑁  is an 𝑘 ∗  𝑛  matrix. 

Consequently, the factorized matrices containing most 

important characteristics of the original matrix can be 

used for efficient modeling and computing, while those 

small matrices are inexpensive to store and manipulate.  

 The traditional deterministic SVD algorithm [6] on a 

large matrix is computationally intensive, which has 

cubic-time complexity with respect to the size of the 

given matrix. For an 𝑚 ∗  𝑛 matrix 𝐴, when both m and n 

are large, deterministic SVD also requires large memory 

space. Randomized SVD [7-10, 15], by contrast, offers 

efficient alternatives to approximate the dominant 

singular components. Williams and Seeger [7] proposed a 

Nyström method to accelerate decomposition in kernel 

machines. Frieze et al. [8] studied column-sampling 

method for finding low-rank approximations in constant 

time. Drineas [9] modified column-sampling method to 

make it fit the pass-efficient model of data-streaming 

computation. Holmes et al. [15] developed a cosine tree 

sampling method for fast approximation of the complete 

matrix SVD. Halko et al. [10] performed random 

sampling on the original matrix to construct a small 

condensed subspace. The dominant actions of the original 

matrix 𝐴  could be quickly estimated from this small 

subspace with relatively low computation cost and high 

confidence. Matrix operations on the projected small 

subspace allow randomized SVD algorithms to take 

advantage of the emerging high performance computing 

platforms, for instance, distributed memory systems, 

multi-core processors, multi-general purpose graphics 

process units (GPGPU), and the Cloud computing 

infrastructure [11, 14].  

 Graphics Processing Unit (GPU) is a specialized 

single-chip processor to take advantage of parallelism to 

achieve high performance computing. Many high 

performance linear algebra libraries on GPU architectures 

are available. For instance, CUBLAS (CUDA Basic 

Linear Algebra Subroutines) [12] contains the GPU-

accelerated functions of basic dense matrix operations. 

Complementary to CUBLAS, CULA [13] is an extended 

linear algebra library provides high-level equivalent 

routines of LAPACK over CUDA runtime. Based on 

these GPU-accelerated libraries, Foster et al. [16] 

designed a GPU-based cosine tree sampling algorithm for 
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column-sampling SVD and achieved speedup of 6~7 over 

CPU implementation in large matrices.  

 In this paper, we focus on the randomized SVD 

algorithm proposed by Halko et al. [10] and present a 

GPU-accelerated implementation to quickly obtain the 

approximate of dominant singular components of a given 

large matrix. We find that the main bottleneck in the GPU 

implementation is the deterministic SVD on GPU with 

"short-and-wide" matrix. Using SVD decomposition on a 

derived square matrix instead can significantly reduce the 

overall computational time. In addition, in the case of 

matrices with a small dominant rank k value, if a hybrid 

GPU-CPU scheme is carried out, the efficiency of our 

implementation can be further improved. 

 The rest of the paper is organized as follows. Section 

2 describes the randomized SVD algorithm. In section 3, 

we analyze the GPU-accelerated implementation of 

randomized SVD algorithm. Section 4 shows 

experimental results on large matrices and a NASA Mars 

image. Section 5 summarizes the paper.  

 

2. The Randomized SVD Algorithm 

 The Randomized SVD algorithm was introduced by 

N. Halko [10-11] to obtain a  low-rank approximation of a 

large matrix. Instead of directly performing deterministic 

SVD on a large matrix, which is usually not only 

computationally costly but also memory intensive, the 

randomized SVD algorithm starts from a small random 

subspace and then projects the original matrix onto this 

subspace. The fundamental idea is, as the most important 

characteristics of the original matrix A are condensed into 

a small randomized subspace, this projected subspace 

becomes an amenable choice to approximate matrix 

decomposition but avoiding high computational cost. 

Algorithm 1 describes the Randomized SVD algorithm 

given an input matrix. 

 

Algorithm 1 Randomized SVD 

Input: 𝐴 ∈ ℝ𝑚∗𝑛,  𝑘 ∈ ℕ and 𝑝 ∈ ℕ satisfying 𝑘 + 𝑝 ≤
𝑚𝑖𝑛 (𝑚, 𝑛). 

Output: k-rank randomized SVD components 𝑈 ∈ ℝ𝑚∗𝑘, 

𝛴 ∈ ℝ𝑘∗𝑘 and 𝑉 ∈ ℝ𝑘∗𝑛 

 

1. Construct an 𝑛 ∗ (𝑘 + 𝑝) random matrix 𝛺 

2. 𝑌 =  𝐴𝛺  

3. Compute an orthogonal basis 𝑄 = 𝑞𝑟(𝑌) 

4. 𝐵 =  𝑄𝑇𝐴  

5. [𝑈𝐵 ,  𝛴𝐵 , 𝑉𝐵]  =  𝑠𝑣𝑑(𝐵)  

6. Update 𝑈𝐵 = 𝑄𝑈𝐵 

7. 𝑈 = 𝑈𝐵(: ,1: 𝑘),𝛴 =  𝛴𝐵(1: 𝑘, 1: 𝑘)  

and 𝑉 = 𝑉𝐵(: ,1: 𝑘) 

 To show how random sampling of A can extract 

information of the top 𝑘 singular values/vectors, let 𝜔𝑗 ∈

ℝ𝑛 and 𝑦𝑗 ∈ ℝ𝑛 denote the 𝑗th column vector of random 

matrix  𝛺  and the 𝑗 th column vector of matrix 𝑌 , 

respectively. Since each element in 𝛺  is chosen 

independently, 𝜔𝑗 can be represented as  

𝜔𝑗 = 𝑐1𝑗𝑣1 + 𝑐2𝑗𝑣2 + ⋯ + 𝑐𝑛𝑗𝑣𝑛 ,    𝑗 = 1, … , 𝑘 + 𝑝 

where 𝑣𝑖 ∈ ℝ𝑛 is 𝑖th right singular vector of matrix 𝐴 and  

𝑐𝑖𝑗 ≠ 0 with probability 1.0. In Algorithm 1, after simply 

projecting A onto 𝛺, we could have  

𝑦𝑗 = 𝜎1𝑐1𝑗𝑣1 + 𝜎2𝑐2𝑗𝑣2 + ⋯ + 𝜎𝑛𝑐𝑛𝑗𝑣𝑛 . 
where 𝜎𝑖  is the 𝑖 th singular value of 𝐴  sorted by non-

decreasing order such that 𝜎1 ≥ 𝜎2 ≥ ⋯ ≥ 𝜎𝑛 ≥ 0 and 

𝜎𝑖𝑐𝑖𝑗  constitutes the weight of 𝑦𝑗  on 𝑣𝑖 . Consequently, 

random sampling ensures that all singular vectors are kept 

in the subspace but the singular vectors corresponding to 

bigger singular values likely yield bigger weights in 𝑦𝑗 . 

Therefore, compared to 𝜔𝑗 , weights of dominating right 

singular vectors are amplified by the corresponding 

singular values. As a result, the space spanned by the 

columns of 𝑌  reflects dominating weights in high 

probability on the singular vectors corresponding to the 

top k singular values.  

 For stability consideration, 𝑌  is augmented to 𝑚 ∗
 (𝑘 +  𝑝)  instead of 𝑚 ∗  𝑘  to incorporate additional 𝑝 

dimensional subspace. Correspondingly, 𝐵 is a (𝑘 + 𝑝) ∗
 𝑛 matrix. When the SVD decomposition on 𝐵 is carried 

out to approximate the top 𝑘 singular values/vectors of 𝐴, 

this additional 𝑝 −dimension space can serve as a noise-

filter to get rid of unwanted subspace corresponding to 

small singular values. In practice, 𝑝 is given with small 

value, such as 5 or 10, as suggested by Halko [10-11]. 

 The main computational operations in the 

randomized SVD algorithm involve matrix-matrix 

multiplications, QR decompositions, and SVD on small 

matrices, which are naturally fit to parallel computing 

platforms, for instance, distributed memory, multi-core, 

multi-general purpose graphics process units (GPGPU) 

and the Cloud computing infrastructure[11, 14]. 

 

3. Implementation 

3.1 GPU-accelerated Implementation  

 The randomized SVD involves the following five 

primary computational components described in the 

section 2: 

(1) generation of random matrix 𝛺; 

(2) matrix-matrix multiplication of 𝐴𝛺 to produce 𝑌; 

(3) QR decomposition on 𝑌; 

(4) matrix-matrix multiplication of 𝑄𝑇𝐴; and 

(5) deterministic SVD decomposition on 𝐵. 

Figure 1 shows a hypothetical description of randomized 

SVD in finding approximate right-hand-side top- 𝑘 

singular vectors. The overall performance of randomized 

SVD depends on the efficiency of matrix-matrix 

multiplication, QR factorization, and SVD on small 



matrices. Fortunately, after random matrix sampling by 𝛺, 

the large matrix 𝐴  is condensed into either "tall-and-

skinny" or "short-and-wide" matrix, such as  𝑌 and 𝑄 are 

𝑚 ∗ (𝑘 + 𝑝)  "Tall-and-skinny" matrices, 𝐵  is an (𝑘 +
𝑝) ∗ 𝑛  "short-and-wide" matrix where 𝑘 + 𝑝  is much 

smaller than 𝑚𝑖𝑛(𝑚, 𝑛). These small and dense matrices 

are particularly suitable fit in GPU memory to take 

advantage of high-performance computation provided. 

We implemented randomized SVD on GPU using 

CUBLAS [12] and CULA [13], and its corresponding 

CPU version using the Intel multi-thread MKL (Math 

Kernel Library) for the sake of performance illustration.  
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Figure 1. Procedure of Randomized SVD to Approximate 

Right-singular Vectors 

 

 The elapsed time spent on each primary 

computational component in randomized SVD is shown 

in Figure 2 for a 4,096 × 4,096 random matrix where 𝑘 is 

128 and p is 3. Multiplication between 𝐴 and a “tall-and-

skinny” or “short-and-wide” matrix can be efficiently 

carried out on the GPU’s SIMT architecture and hence the 

computational time in generating matrix 𝛺  and 

performing matrix-matrix multiplications shrinks to 

nearly negligible. Nevertheless, deterministic SVD, 

particularly when the target matrix is small, has difficulty 

in fully taking advantage of GPU architecture, due to a 

series of sequential Householder transformations need to 

be applied. As a result, deterministic SVD becomes the 

main bottleneck and thus this GPU implementation has 

only 1.65 over that of the CPU.  

 

 
Figure 2. The Elapsed Computational Time Used in 

Randomized SVD on CPU-Only and GPU-Only 

 

3.2 Approximate SVD decomposition of 𝐁 

 To reduce the computational cost of deterministic 

SVD in GPU randomized SVD implementation, we 

alternatively calculate the top-k singular vectors of 𝐵𝐵𝑇  

instead of directly carrying out deterministic SVD on the 

"short-and-wide" matrix 𝐵. Figure 3 depicts the procedure 

of obtaining approximate SVD decomposition of 𝐵. Note 

that SVD decomposition of  𝐵 is defined as 

𝐵 = 𝑈𝐵𝛴𝐵𝑉𝐵
𝑇 . 

Since 𝐵𝐵𝑇  is a small square matrix whose size is 

independent of the size of the original matrix 𝐴, and has 

SVD format as, 

𝐵𝐵𝑇 = 𝑈𝐵𝛴𝐵𝑈𝐵
𝑇 , 

𝑈𝐵 could be very efficiently derived from 𝐵𝐵𝑇  rather than 

from 𝐵. 
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Figure 3.  Procedure of Obtaining Approximate SVD 

Decomposition of 𝐵 
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 Once the left singular vectors 𝑈𝐵  become available, 

under the assumption that 𝑈𝐵
𝑇𝑈𝐵 ≈ 𝐼 , where 𝐼  is an 

identity matrix, the top k singular components could be 

approximated effectively through a single matrix-matrix 

operation 

𝑈𝐵
𝑇𝐵 ≈ 𝛴𝐵𝑉𝐵

𝑇 . 
Figure 4 shows the elapsed time of the improved 

implementation by using 𝐵𝐵𝑇  on the same 4,096 × 4,096 

random matrix used in Figure 2. One can find that the 

portion of SVD computation time is significantly reduced 

on both CPU and GPU implementations. Consequently, 

the achieved speedup of GPU implementation grows up to 

4.6. 

 

 
Figure 4. The Elapsed Time Used in Randomized SVD 

on CPU-Only and GPU-Only by Using 𝐵𝐵𝑇  

 

3.3 Hybrid GPU-CPU Scheme 

 As shown in figure 4, even though the alternative 

approach of approximating top-k singular values/singular 

vectors on 𝐵𝐵𝑇  is used, the computational time of 

deterministic SVD on GPU is still more than that of the 

CPU version due to hidden setup on GPU. To further 

understand the performance of deterministic SVD on 

GPU, we compute deterministic SVD to a set of square 

matrices varying in size. Figure 5 compares the 

computational time of deterministic SVD on CPU and 

GPU. One can find that the CPU implementation 

outperforms the GPU one on small matrices less than 

2,500 ∗ 2,500 . Therefore, using GPU to run SVD 

operations on small matrices is not appropriate, 

particularly for applications where the singular values 

decay very quickly and 𝑘 is typically set with very small 

value.  

 
Figure 5. Comparison of Running Time for Performing 

Deterministic SVD on GPU and CPU 

 

 In our implementation, we develop a simple hybrid 

GPU-CPU scheme. If the 𝑘 ∗ 𝑘 square matrix is small, it 

will be transferred to the CPU to carry out deterministic 

SVD decomposition instead.   

 

4. Results 
 In this section, we present the numerical results 

obtained with GPU-accelerated implementation on large 

random matrices and Mars image. The experiments are 

carried out on a Linux computer with an Intel Core i5-

2500K CPU 3.30GHz CPU, 8GB of RAM and an 

NVIDIA GK110GL GPU.  

 

4.1 Random Matrices 

 We generate a series of large random dense matrices 

of varying sizes to benchmark the performance achieved 

by using our GPU-accelerated randomized SVD 

algorithm. Figure 6 compares the computational time in 

logarithmic scale of performing complete SVD and 

randomized SVD on CPU as well as GPU-accelerated 

randomized SVD algorithm. The same 𝑘 and 𝑝 (𝑘 =  256 

and 𝑝 =  3 ) values are used. Compared to doing the 

complete SVD calculation on the matrix, randomized 

SVD has a clear computational advantage when only the 

top-k approximated singular components are needed. 

When the GPU architecture is taken advantage of, a more 

aggressive speedup is achieved.   
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Figure 6. Comparison of Elapsed Time 

(logarithmic scale) of Deterministic SVD, CPU versions 

of Randomized SVD and GPU-accelerated Randomized 

SVD 

 

 Figure 7 illustrates the speedup factor for our GPU-

accelerated implementation of randomized SVD over the 

corresponding CPU-based one. Similar to many other 

GPU-based algorithms, our GPU randomized SVD 

implementation favors larger matrices. For a 20,000 ∗
20,000 matrix, the speedup can reach up to 6~7.  

 
Figure 7. The Speedup of GPU-accelerated 

Implementation over the CPU-only Implementation. 

 

4.2 Image Compression 

 We apply the randomized SVD algorithm for lossy 

data compression to a NASA synthesis image from the 

Mars Exploration Rover mission [17] shown in Figure 8. 

The image is an RGB 7671 ∗ 7680 ∗ 3  matrix, which 

requires 176.74 million bytes for memory storage.  

 

 
Figure 8. The Original Image 

 

 In order to compress the image, we use our GPU-

accelerated implementation to obtain its low rank 

approximation 𝐴𝑘 with rank 470,   

𝐴𝑘 = 𝑀 ∗  𝑁 

where 𝑀  is a 7671 x 470 matrix and 𝑁  is a 470 ∗ 7680 

matrix on each color channel (R,G,B). Figure 9 shows the 

reconstructed image, where 𝑀 is computed by combining 

the 470  left singular vectors with the corresponding 

singular values while 𝑁 is stored as the 470 right singular 

vectors as columns. To outline the effectiveness of our 

implementation of randomized SVD, Table 1 lists the 

elapsed computational time and error used in compression 

with Mars Image. As one can find, compared to 

deterministic SVD which consumes more than one 

thousand seconds to obtain the top 470 approximation, the 

GPU-accelerated randomized SVD only takes slightly 

more than one second. The overall storage of the 

decomposed image requires less than 1/8 of that of the 

original matrix with an acceptable 1.63% error.   

 

 
Figure 9. Reconstructed Image with Rank 470 
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Elapsed Time 

(in seconds) 

Error in 

Compression 

Deterministic 

SVD 
1144.71 1% 

Randomized 

SVD 
1.29 1.63% 

Table 1. Elapsed Computational Time and Error in 

Compression with the Mars Image 

 

5. Conclusions 

 In this paper, we present a GPU-accelerated 

implementation of randomized SVD to accelerate the 

process of approximating dominating singular 

components using both GPU and CPU. The efficiency is 

further improved by performing SVD decomposition on a 

small square matrix, which is the product of a “tall-and-

skinny” matrix and its transpose. Our computational 

results on large random matrices and a NASA synthesis 

image show that the dominating singular components can 

be effectively obtained and the GPU-accelerated 

implementation outperforms the corresponding CPU 

version by around 6~7 times. 
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