
GPU Accelerated Randomized Singular Value Decomposition and Its

Application in Image Compression

Hao Ji and Yaohang Li

Department of Computer Science

Old Dominion University

hji@cs.odu.edu, yaohang@cs.odu.edu

Abstract

In this paper, we present a GPU-accelerated

implementation of randomized Singular Value

Decomposition (SVD) algorithm on a large matrix to

rapidly approximate the top-𝑘 dominating singular values

and correspondent singular vectors. The fundamental idea

of randomized SVD is to condense a large matrix into a

small dense matrix by random sampling while keeping the

important information. Then performing traditional

deterministic SVD on this small dense matrix reveals the

top- 𝑘 dominating singular values/singular vectors

approximation. The randomized SVD algorithm is

suitable for the GPU architecture; however, our study

finds that the key bottleneck lies on the SVD computation

of the small matrix. Our solution is to modify the

randomized SVD algorithm by applying SVD to a derived

small square matrix instead as well as a hybrid GPU-CPU

scheme. Our GPU-accelerated randomized SVD

implementation is around 6~7 times faster than the

corresponding CPU version. Our experimental results

demonstrate that the GPU-accelerated randomized SVD

implementation can be effectively used in image

compression.

Keywords: Random Sampling, Singular Value

Decomposition, Low-Rank Approximation, Image

Compression, Graphics Processing Unit

1. Introduction

A factorization of a real matrix 𝐴 ∈ ℝ𝑚∗𝑛 is singular

value decomposition (SVD) if

𝐴 = 𝑈 ∗ 𝛴 ∗ 𝑉𝑇

where 𝑈 ∈ ℝm∗m and 𝑉 ∈ ℝn∗n are matrices with

orthonormal columns, 𝛴 ∈ ℝm∗n is a diagonal matrix

whose elements, 𝜎1, 𝜎2, … , 𝜎𝑛, are nonnegative singular

values in non-decreasing order. SVD plays an important

role in a wide range of modeling and simulation

applications, such as modeling of genome-wide

expression data [1], large-scale atmosphere-ocean

interaction analysis [2], data-unfolding in high energy

physics [3], recommendation engine in social network

modeling [4] and simulations with MRI data [5], etc. One

primary advantage of using SVD is that the low rank

approximation 𝐴𝑘 to matrix 𝐴 with rank 𝑘 can be readily

formed as

𝐴𝑘 = 𝑀 ∗ 𝑁

where 𝑀 is an 𝑚 ∗ 𝑘 matrix and 𝑁 is an 𝑘 ∗ 𝑛 matrix.

Consequently, the factorized matrices containing most

important characteristics of the original matrix can be

used for efficient modeling and computing, while those

small matrices are inexpensive to store and manipulate.

 The traditional deterministic SVD algorithm [6] on a

large matrix is computationally intensive, which has

cubic-time complexity with respect to the size of the

given matrix. For an 𝑚 ∗ 𝑛 matrix 𝐴, when both m and n

are large, deterministic SVD also requires large memory

space. Randomized SVD [7-10, 15], by contrast, offers

efficient alternatives to approximate the dominant

singular components. Williams and Seeger [7] proposed a

Nyström method to accelerate decomposition in kernel

machines. Frieze et al. [8] studied column-sampling

method for finding low-rank approximations in constant

time. Drineas [9] modified column-sampling method to

make it fit the pass-efficient model of data-streaming

computation. Holmes et al. [15] developed a cosine tree

sampling method for fast approximation of the complete

matrix SVD. Halko et al. [10] performed random

sampling on the original matrix to construct a small

condensed subspace. The dominant actions of the original

matrix 𝐴 could be quickly estimated from this small

subspace with relatively low computation cost and high

confidence. Matrix operations on the projected small

subspace allow randomized SVD algorithms to take

advantage of the emerging high performance computing

platforms, for instance, distributed memory systems,

multi-core processors, multi-general purpose graphics

process units (GPGPU), and the Cloud computing

infrastructure [11, 14].

 Graphics Processing Unit (GPU) is a specialized

single-chip processor to take advantage of parallelism to

achieve high performance computing. Many high

performance linear algebra libraries on GPU architectures

are available. For instance, CUBLAS (CUDA Basic

Linear Algebra Subroutines) [12] contains the GPU-

accelerated functions of basic dense matrix operations.

Complementary to CUBLAS, CULA [13] is an extended

linear algebra library provides high-level equivalent

routines of LAPACK over CUDA runtime. Based on

these GPU-accelerated libraries, Foster et al. [16]

designed a GPU-based cosine tree sampling algorithm for

mailto:hji@cs.odu.edu
mailto:yaohang@cs.odu.edu

column-sampling SVD and achieved speedup of 6~7 over

CPU implementation in large matrices.

 In this paper, we focus on the randomized SVD

algorithm proposed by Halko et al. [10] and present a

GPU-accelerated implementation to quickly obtain the

approximate of dominant singular components of a given

large matrix. We find that the main bottleneck in the GPU

implementation is the deterministic SVD on GPU with

"short-and-wide" matrix. Using SVD decomposition on a

derived square matrix instead can significantly reduce the

overall computational time. In addition, in the case of

matrices with a small dominant rank k value, if a hybrid

GPU-CPU scheme is carried out, the efficiency of our

implementation can be further improved.

 The rest of the paper is organized as follows. Section

2 describes the randomized SVD algorithm. In section 3,

we analyze the GPU-accelerated implementation of

randomized SVD algorithm. Section 4 shows

experimental results on large matrices and a NASA Mars

image. Section 5 summarizes the paper.

2. The Randomized SVD Algorithm

 The Randomized SVD algorithm was introduced by

N. Halko [10-11] to obtain a low-rank approximation of a

large matrix. Instead of directly performing deterministic

SVD on a large matrix, which is usually not only

computationally costly but also memory intensive, the

randomized SVD algorithm starts from a small random

subspace and then projects the original matrix onto this

subspace. The fundamental idea is, as the most important

characteristics of the original matrix A are condensed into

a small randomized subspace, this projected subspace

becomes an amenable choice to approximate matrix

decomposition but avoiding high computational cost.

Algorithm 1 describes the Randomized SVD algorithm

given an input matrix.

Algorithm 1 Randomized SVD

Input: 𝐴 ∈ ℝ𝑚∗𝑛, 𝑘 ∈ ℕ and 𝑝 ∈ ℕ satisfying 𝑘 + 𝑝 ≤
𝑚𝑖𝑛 (𝑚, 𝑛).

Output: k-rank randomized SVD components 𝑈 ∈ ℝ𝑚∗𝑘,

𝛴 ∈ ℝ𝑘∗𝑘 and 𝑉 ∈ ℝ𝑘∗𝑛

1. Construct an 𝑛 ∗ (𝑘 + 𝑝) random matrix 𝛺

2. 𝑌 = 𝐴𝛺

3. Compute an orthogonal basis 𝑄 = 𝑞𝑟(𝑌)

4. 𝐵 = 𝑄𝑇𝐴

5. [𝑈𝐵 , 𝛴𝐵 , 𝑉𝐵] = 𝑠𝑣𝑑(𝐵)

6. Update 𝑈𝐵 = 𝑄𝑈𝐵

7. 𝑈 = 𝑈𝐵(: ,1: 𝑘),𝛴 = 𝛴𝐵(1: 𝑘, 1: 𝑘)

and 𝑉 = 𝑉𝐵(: ,1: 𝑘)

 To show how random sampling of A can extract

information of the top 𝑘 singular values/vectors, let 𝜔𝑗 ∈

ℝ𝑛 and 𝑦𝑗 ∈ ℝ𝑛 denote the 𝑗th column vector of random

matrix 𝛺 and the 𝑗 th column vector of matrix 𝑌 ,

respectively. Since each element in 𝛺 is chosen

independently, 𝜔𝑗 can be represented as

𝜔𝑗 = 𝑐1𝑗𝑣1 + 𝑐2𝑗𝑣2 + ⋯ + 𝑐𝑛𝑗𝑣𝑛 , 𝑗 = 1, … , 𝑘 + 𝑝

where 𝑣𝑖 ∈ ℝ𝑛 is 𝑖th right singular vector of matrix 𝐴 and

𝑐𝑖𝑗 ≠ 0 with probability 1.0. In Algorithm 1, after simply

projecting A onto 𝛺, we could have

𝑦𝑗 = 𝜎1𝑐1𝑗𝑣1 + 𝜎2𝑐2𝑗𝑣2 + ⋯ + 𝜎𝑛𝑐𝑛𝑗𝑣𝑛 .
where 𝜎𝑖 is the 𝑖 th singular value of 𝐴 sorted by non-

decreasing order such that 𝜎1 ≥ 𝜎2 ≥ ⋯ ≥ 𝜎𝑛 ≥ 0 and

𝜎𝑖𝑐𝑖𝑗 constitutes the weight of 𝑦𝑗 on 𝑣𝑖 . Consequently,

random sampling ensures that all singular vectors are kept

in the subspace but the singular vectors corresponding to

bigger singular values likely yield bigger weights in 𝑦𝑗 .

Therefore, compared to 𝜔𝑗 , weights of dominating right

singular vectors are amplified by the corresponding

singular values. As a result, the space spanned by the

columns of 𝑌 reflects dominating weights in high

probability on the singular vectors corresponding to the

top k singular values.

 For stability consideration, 𝑌 is augmented to 𝑚 ∗
 (𝑘 + 𝑝) instead of 𝑚 ∗ 𝑘 to incorporate additional 𝑝

dimensional subspace. Correspondingly, 𝐵 is a (𝑘 + 𝑝) ∗
 𝑛 matrix. When the SVD decomposition on 𝐵 is carried

out to approximate the top 𝑘 singular values/vectors of 𝐴,

this additional 𝑝 −dimension space can serve as a noise-

filter to get rid of unwanted subspace corresponding to

small singular values. In practice, 𝑝 is given with small

value, such as 5 or 10, as suggested by Halko [10-11].

 The main computational operations in the

randomized SVD algorithm involve matrix-matrix

multiplications, QR decompositions, and SVD on small

matrices, which are naturally fit to parallel computing

platforms, for instance, distributed memory, multi-core,

multi-general purpose graphics process units (GPGPU)

and the Cloud computing infrastructure[11, 14].

3. Implementation

3.1 GPU-accelerated Implementation

 The randomized SVD involves the following five

primary computational components described in the

section 2:

(1) generation of random matrix 𝛺;

(2) matrix-matrix multiplication of 𝐴𝛺 to produce 𝑌;

(3) QR decomposition on 𝑌;

(4) matrix-matrix multiplication of 𝑄𝑇𝐴; and

(5) deterministic SVD decomposition on 𝐵.

Figure 1 shows a hypothetical description of randomized

SVD in finding approximate right-hand-side top- 𝑘

singular vectors. The overall performance of randomized

SVD depends on the efficiency of matrix-matrix

multiplication, QR factorization, and SVD on small

matrices. Fortunately, after random matrix sampling by 𝛺,

the large matrix 𝐴 is condensed into either "tall-and-

skinny" or "short-and-wide" matrix, such as 𝑌 and 𝑄 are

𝑚 ∗ (𝑘 + 𝑝) "Tall-and-skinny" matrices, 𝐵 is an (𝑘 +
𝑝) ∗ 𝑛 "short-and-wide" matrix where 𝑘 + 𝑝 is much

smaller than 𝑚𝑖𝑛(𝑚, 𝑛). These small and dense matrices

are particularly suitable fit in GPU memory to take

advantage of high-performance computation provided.

We implemented randomized SVD on GPU using

CUBLAS [12] and CULA [13], and its corresponding

CPU version using the Intel multi-thread MKL (Math

Kernel Library) for the sake of performance illustration.

ΩA Y Q

AQ
T

B U ∑

QR

SVD
V

T
B

V
T

B B

(1)

(2)

(3)

(4) (5)

Figure 1. Procedure of Randomized SVD to Approximate

Right-singular Vectors

 The elapsed time spent on each primary

computational component in randomized SVD is shown

in Figure 2 for a 4,096 × 4,096 random matrix where 𝑘 is

128 and p is 3. Multiplication between 𝐴 and a “tall-and-

skinny” or “short-and-wide” matrix can be efficiently

carried out on the GPU’s SIMT architecture and hence the

computational time in generating matrix 𝛺 and

performing matrix-matrix multiplications shrinks to

nearly negligible. Nevertheless, deterministic SVD,

particularly when the target matrix is small, has difficulty

in fully taking advantage of GPU architecture, due to a

series of sequential Householder transformations need to

be applied. As a result, deterministic SVD becomes the

main bottleneck and thus this GPU implementation has

only 1.65 over that of the CPU.

Figure 2. The Elapsed Computational Time Used in

Randomized SVD on CPU-Only and GPU-Only

3.2 Approximate SVD decomposition of 𝐁

 To reduce the computational cost of deterministic

SVD in GPU randomized SVD implementation, we

alternatively calculate the top-k singular vectors of 𝐵𝐵𝑇

instead of directly carrying out deterministic SVD on the

"short-and-wide" matrix 𝐵. Figure 3 depicts the procedure

of obtaining approximate SVD decomposition of 𝐵. Note

that SVD decomposition of 𝐵 is defined as

𝐵 = 𝑈𝐵𝛴𝐵𝑉𝐵
𝑇 .

Since 𝐵𝐵𝑇 is a small square matrix whose size is

independent of the size of the original matrix 𝐴, and has

SVD format as,

𝐵𝐵𝑇 = 𝑈𝐵𝛴𝐵𝑈𝐵
𝑇 ,

𝑈𝐵 could be very efficiently derived from 𝐵𝐵𝑇 rather than

from 𝐵.

B U ∑
SVD

V
T

B

V
T

B B

SVDB BT ∑ BUB UB
T2

UB
T B V

T

text

Figure 3. Procedure of Obtaining Approximate SVD

Decomposition of 𝐵

CPU GPU
0

50

100

150

200

250

300

350
Randomized SVD

E
la

p
s
e

d
 T

im
e

 (
 i
n

 m
il
li
s
e

c
o

n
d

s
)

 Generate 

 Y = A*

 QR(Y)

 B = Q
T
*A

 SVD(B)

 Once the left singular vectors 𝑈𝐵 become available,

under the assumption that 𝑈𝐵
𝑇𝑈𝐵 ≈ 𝐼 , where 𝐼 is an

identity matrix, the top k singular components could be

approximated effectively through a single matrix-matrix

operation

𝑈𝐵
𝑇𝐵 ≈ 𝛴𝐵𝑉𝐵

𝑇 .
Figure 4 shows the elapsed time of the improved

implementation by using 𝐵𝐵𝑇 on the same 4,096 × 4,096

random matrix used in Figure 2. One can find that the

portion of SVD computation time is significantly reduced

on both CPU and GPU implementations. Consequently,

the achieved speedup of GPU implementation grows up to

4.6.

Figure 4. The Elapsed Time Used in Randomized SVD

on CPU-Only and GPU-Only by Using 𝐵𝐵𝑇

3.3 Hybrid GPU-CPU Scheme

 As shown in figure 4, even though the alternative

approach of approximating top-k singular values/singular

vectors on 𝐵𝐵𝑇 is used, the computational time of

deterministic SVD on GPU is still more than that of the

CPU version due to hidden setup on GPU. To further

understand the performance of deterministic SVD on

GPU, we compute deterministic SVD to a set of square

matrices varying in size. Figure 5 compares the

computational time of deterministic SVD on CPU and

GPU. One can find that the CPU implementation

outperforms the GPU one on small matrices less than

2,500 ∗ 2,500 . Therefore, using GPU to run SVD

operations on small matrices is not appropriate,

particularly for applications where the singular values

decay very quickly and 𝑘 is typically set with very small

value.

Figure 5. Comparison of Running Time for Performing

Deterministic SVD on GPU and CPU

 In our implementation, we develop a simple hybrid

GPU-CPU scheme. If the 𝑘 ∗ 𝑘 square matrix is small, it

will be transferred to the CPU to carry out deterministic

SVD decomposition instead.

4. Results
 In this section, we present the numerical results

obtained with GPU-accelerated implementation on large

random matrices and Mars image. The experiments are

carried out on a Linux computer with an Intel Core i5-

2500K CPU 3.30GHz CPU, 8GB of RAM and an

NVIDIA GK110GL GPU.

4.1 Random Matrices

 We generate a series of large random dense matrices

of varying sizes to benchmark the performance achieved

by using our GPU-accelerated randomized SVD

algorithm. Figure 6 compares the computational time in

logarithmic scale of performing complete SVD and

randomized SVD on CPU as well as GPU-accelerated

randomized SVD algorithm. The same 𝑘 and 𝑝 (𝑘 = 256

and 𝑝 = 3) values are used. Compared to doing the

complete SVD calculation on the matrix, randomized

SVD has a clear computational advantage when only the

top-k approximated singular components are needed.

When the GPU architecture is taken advantage of, a more

aggressive speedup is achieved.

CPU GPU
0

50

100

150

200

250

300

350
Randomized SVD

E
la

p
s
e
d
 T

im
e
 (

 i
n
 m

il
li
s
e
c
o
n
d
s
)

 Generate 

 Y = A*

 QR(Y)

 B = Q
T
*A

 SVD(B)

1K 2K 3K 4K 5K
0

1

2

3

4

5

6

7

8

9

10
x 10

4 Deterministic SVD on Square Matrices

Matrix Size (number of rows)

E
la

p
s
e

d
 T

im
e

 (
 i
n

 m
il
li
s
e

c
o

n
d

s
)

 CPU

 GPU

Figure 6. Comparison of Elapsed Time

(logarithmic scale) of Deterministic SVD, CPU versions

of Randomized SVD and GPU-accelerated Randomized

SVD

 Figure 7 illustrates the speedup factor for our GPU-

accelerated implementation of randomized SVD over the

corresponding CPU-based one. Similar to many other

GPU-based algorithms, our GPU randomized SVD

implementation favors larger matrices. For a 20,000 ∗
20,000 matrix, the speedup can reach up to 6~7.

Figure 7. The Speedup of GPU-accelerated

Implementation over the CPU-only Implementation.

4.2 Image Compression

 We apply the randomized SVD algorithm for lossy

data compression to a NASA synthesis image from the

Mars Exploration Rover mission [17] shown in Figure 8.

The image is an RGB 7671 ∗ 7680 ∗ 3 matrix, which

requires 176.74 million bytes for memory storage.

Figure 8. The Original Image

 In order to compress the image, we use our GPU-

accelerated implementation to obtain its low rank

approximation 𝐴𝑘 with rank 470,

𝐴𝑘 = 𝑀 ∗ 𝑁

where 𝑀 is a 7671 x 470 matrix and 𝑁 is a 470 ∗ 7680

matrix on each color channel (R,G,B). Figure 9 shows the

reconstructed image, where 𝑀 is computed by combining

the 470 left singular vectors with the corresponding

singular values while 𝑁 is stored as the 470 right singular

vectors as columns. To outline the effectiveness of our

implementation of randomized SVD, Table 1 lists the

elapsed computational time and error used in compression

with Mars Image. As one can find, compared to

deterministic SVD which consumes more than one

thousand seconds to obtain the top 470 approximation, the

GPU-accelerated randomized SVD only takes slightly

more than one second. The overall storage of the

decomposed image requires less than 1/8 of that of the

original matrix with an acceptable 1.63% error.

Figure 9. Reconstructed Image with Rank 470

1K 2K 4K 8K 10K 20K
10

1

10
2

10
3

10
4

10
5

10
6

10
7

Random Matrices

Matrix Size

E
la

p
s
e

d
 T

im
e

 (
 i
n

 m
il
li
s
e

c
o

n
d

s
)

 Complete SVD (CPU)

 Randomized SVD (CPU)

 Randomized SVD (GPU/CPU)

1K 2K 4K 8K 10K 20K
1

2

3

4

5

6

7
Random Matrix

Matrix Size

S
p
e
e
d
u
p

Elapsed Time

(in seconds)

Error in

Compression

Deterministic

SVD
1144.71 1%

Randomized

SVD
1.29 1.63%

Table 1. Elapsed Computational Time and Error in

Compression with the Mars Image

5. Conclusions

 In this paper, we present a GPU-accelerated

implementation of randomized SVD to accelerate the

process of approximating dominating singular

components using both GPU and CPU. The efficiency is

further improved by performing SVD decomposition on a

small square matrix, which is the product of a “tall-and-

skinny” matrix and its transpose. Our computational

results on large random matrices and a NASA synthesis

image show that the dominating singular components can

be effectively obtained and the GPU-accelerated

implementation outperforms the corresponding CPU

version by around 6~7 times.

Acknowledgements

 Yaohang Li acknowledges support from ODU 2013

Multidisciplinary Seed grant. Hao Ji acknowledges

support from ODU Modeling and Simulation Fellowship.

References

[1] Alter, Orly, Patrick O. Brown, and David Botstein.

2000. "Singular value decomposition for genome-

wide expression data processing and modeling."

Proceedings of the National Academy of Sciences 97,

no. 18: 10101-10106.

[2] Wallace, John M., Catherine Smith, and Christopher

S. Bretherton. 1992. "Singular value decomposition

of wintertime sea surface temperature and 500-mb

height anomalies." Journal of climate 5, no. 6: 561-

576.

[3] Hoecker, Andreas, and Vakhtang Kartvelishvili. 1996.

"SVD approach to data unfolding." Nuclear

Instruments and Methods in Physics Research

Section A: Accelerators, Spectrometers, Detectors

and Associated Equipment 372, no. 3: 469-481.

[4] Sarwar, Badrul, George Karypis, Joseph Konstan,

and John Riedl. 2002. "Incremental singular value

decomposition algorithms for highly scalable

recommender systems." In Fifth International

Conference on Computer and Information Science:

27-28.

[5] Calamante, Fernando, David G. Gadian, and Alan

Connelly. 2000. "Delay and dispersion effects in

dynamic susceptibility contrast MRI: simulations

using singular value decomposition." Magnetic

resonance in medicine 44, no. 3: 466-473.

[6] Golub, Gene H., and Charles F. 2012. Van

Loan. Matrix computations. Vol. 3. JHU Press.

[7] Williams, Christopher, and Matthias Seeger. 2001.

"Using the Nyström method to speed up kernel

machines." In Advances in Neural Information

Processing Systems 13.

[8] Frieze, Alan, Ravi Kannan, and Santosh Vempala.

2004. "Fast Monte-Carlo algorithms for finding low-

rank approximations." Journal of the ACM

(JACM) 51, no. 6: 1025-1041.

[9] Drineas, Petros, Ravi Kannan, and Michael W.

Mahoney. 2006. "Fast Monte Carlo algorithms for

matrices II: Computing a low-rank approximation to

a matrix."SIAM Journal on Computing 36, no. 1:

158-183.

[10] Halko, Nathan, Per-Gunnar Martinsson, and Joel A.

Tropp. 2011. "Finding structure with randomness:

Probabilistic algorithms for constructing approximate

matrix decompositions." SIAM review 53, no. 2:

217-288.

[11] Halko, Nathan P. 2012. "Randomized methods for

computing low-rank approximations of matrices."

PhD diss., University of Colorado.

[12] Nvidia, C. U. D. A. 2008. "Cublas library." NVIDIA

Corporation, Santa Clara, California15.

[13] Humphrey, John R., Daniel K. Price, Kyle E.

Spagnoli, Aaron L. Paolini, and Eric J. Kelmelis.

2010. "CULA: hybrid GPU accelerated linear algebra

routines." InSPIE Defense, Security, and Sensing, pp.

770502-770502. International Society for Optics and

Photonics.

[14] Mahoney, Michael W. 2011. "Randomized

algorithms for matrices and data." arXiv preprint

arXiv:1104.5557.

[15] Holmes, Michael P., Alexander G. Gray, and Charles

Lee Isbell Jr. 2008. "QUIC-SVD: Fast SVD Using

Cosine Trees." In NIPS, pp. 673-680.

[16] Foster, Blake, Sridhar Mahadevan, and Rui Wang.

2012. "A GPU-based approximate SVD algorithm."

In Parallel Processing and Applied Mathematics, pp.

569-578. Springer Berlin Heidelberg.

[17] http://photojournal.jpl.nasa.gov/catalog/PIA14745.

Biographies

Hao Ji is a Ph.D. student in the Department of Computer

Science at Old Dominion University. He received the B.S.

degree in Applied Mathematics and M.S. degree in

Computer Science from Hefei University of Technology

in 2007 and 2010, respectively. His research interest is

large-scale scientific computing.

http://photojournal.jpl.nasa.gov/catalog/PIA14745

Yaohang Li is an Associate Professor in Computer

Science at Old Dominion University. He received his B.S.

in Computer Science from South China University of

Technology in 1997 and M.S. and Ph.D. degrees from the

Department of Computer Science, Florida State

University in 2000 and 2003, respectively. After

graduation, he worked as a research associate in the

Computer Science and Mathematics Division at Oak

Ridge National Laboratory, TN. His research interest is in

Computational Biology, Monte Carlo Methods, and High

Performance Computing.

