AlgAE
(Algorithm Animation Engine)
Reference Manual
Version 3.0

Steven J. Zeil
Old Dominion University
Dept. of Computer Science

August 20, 2011

Copyright: This document is

© 2011, Steven J. Zeil.

Permission is granted to freely distribute this document, providing that the original copyright
notice is retained.

The ALGAE software is distributed under the Educational Community License as described in
the accompanying LICENSE.txt file.

ii

Contents

(I__Introduction|
[I.L1 Whatis AIgAE?
[1.2 DesignPrinciples| L
[1.3 Platforms Supported|

2__Tnstallationl
2.1 Obtamning ALGAE|
2.2~ Configuration and Installation|
2.3 Testing your installation| oo oo oL

|3 Running an Animation|
3.1 Deploying an Animation]

4 Animating a Java Algorithm|
4.1 Anmimation with Arrays|
4.1.1 Setting Up An ALGAE Progect.
4.1.2 Creatingthe Driver|
i4.1.3 Displaying Global Datal.
4.1.4 The Fine Artof Fibbing|
i4.1.5 Inserting Breakpoints|. o 0oL
4.1.6 Displaying LocalDatal

4.2 Rendering Your Own Structures|
4.2.1 Rendering|.
4.2.2 Rendering Linked List Nodes|

|S Animating a C++ Algorithm|

iii

(S BNV BNV Y | O N

B |

v

CONTENTS

Chapter 1

Introduction

1.1 Whatis AIgAE?

ALGAE is a framework for quick construction of algorithm animations. ALGAE is aimed at CS
instructors who employ projection screen monitors, LCD overhead pads, or other devices to display
computer video output in the classroom or who publish web content in support of their courses.
ALGAE allows the instructor to take typical C++ or Java code from a course’s textbook or lecture
notes and, with relatively little effort, produce an “animated” version of that code. These animations
will show the data as it is being manipulated by the code. Data is portrayed as a collection of labeled
boxes connected by arrows (denoting pointers). shows a typical ALGAE animation in
progress.

I have used ALGAE (and an earlier version, written in Pascal) for our CS2 course (which em-
phasizes program design, the use of ADT’s, and some fundamental data structures) and for a course
in Advanced Data Structures and Algorithms. I have used it with LCD overhead pads, external
video projectors, and scan converters feeding into a broadcast TV signal. ALGAE animations have
been an integral part of a data structures course that I offer to distance students via the internet for
more than 10 years.

Version 3.0 of ALGAE is a major rewrite of the original system. It is easier to install and to use
than the earlier versions ']

'On the other hand, direct animation of C++ code is no longer supported (though it is relatively easy to use Java to
simulate animation of C++). The network socket-based architecture used to support C++ animation by Versions 1 and 2
was unwieldy — many people found it hard to install, and University network administrators are increasingly reluctant
to open up ports for software that they themselves do not maintain.

I hope to restore C++ support in the near future.

http://www.cs.odu.edu/~fac/teched.html

Algorithm Help

CHAPTER 1. INTRODUCTION

inOrder { t: ¥

inOrder t/ ¥

root:

printed - now go right

T
096:

097:

098: void inOrder (BinaryTreeMode* t)
099:{

103: if(t!=0)

104 ¢

106: inOrder(t-=left);

108: cout =< t-=data =="";

110: inOrder{t-=right);

111}

113:}

1]

i I

edu.odu.cs.cs333.

ns.BinaryTreesjava | v |

LI

Figure 1.1: A Typical AIgAE Animation in Progress

1.2. DESIGN PRINCIPLES 3

1.2 Design Principles
ALGAES design is based on the following principles:

Animations should be tied to real, running code. Yes, there are lots of general-purpose an-
imation packages out there that can produce much prettier pictures. Or you can simply use
a conventional drawing tool to present a series of “snapshots”, slide by slide. Both of these
approaches require you to script out, before the lecture, the exact sequence of operations you
want to show. I find this takes more time, in the long run, than building an ALGAE anima-
tion. In particular, I found that small mistakes in a “script” often meant having to go back
and redraw large numbers of frames.

Perhaps the biggest drawback to these scripted approaches is the lack of flexibility. You can
walk nicely through a scripted presentation of the algorithm’s execution, then a student raises
a hand, and asks “but what if...” and takes you right out of your script. With ALGAE you
simply re-run the algorithm with different inputs.

Animations should be tied to code from the course text and lecture notes. Instructors who are
facile with graphics-rich languages and packages might consider simply writing a program to
draw pictures that simulate the algorithm being discussed. But I suspect that this, also, will
prove more time-consuming than using ALGAE. Furthermore, this alternative introduces the
problem of keeping the the animated algorithm consistent with the code under discussion. It’s
counter-productive to have the animation do things in a different order than can be explained
by students reading along in their notes on the algorithm.

It must be easy to create an animation from existing code. This is essential, because otherwise
it would be more effective for an instructor to fall back on hand-drawn illustrations. Also,
texts change frequently, and so, therefore, does the code to be presented to the students.
(A year after I finished my Pascal animations, our Department changed our instructional
programming language to C++. Since that change, I've used 3 different data structures texts,
and many of my other texts have come out with new editions.)

The animations must be easy to run and control. When I’m lecturing, I don’t need the dis-
traction of trying to manage a complicated interface while still trying to keep my speech
coherent. Also, students frequently ask if they can run the animation programs themselves
while studying outside of class.

Some sort of automated layout is essential. In my earlier Pascal algorithm animator, each ob-
ject had to be manually positioned using the mouse. This turned out to be terribly distracting,
especially for data structures like AVL trees where the “natural” positions of objects changes
regularly.

4 CHAPTER 1. INTRODUCTION

The instructor/student needs constant feedback about where the current execution point is in
the algorithm. Without this, it’s too easy to get confused and totally demolish the instruc-
tor’s reputation for infallibility! ALGAE provides both a status area for instructor-designed
messages, and an ability to synchronize a view of the source code with the current execution
location. The ability to trace through the source code is shown in If a sufficiently
large font size is selected for this trace, students can read the algorithm code off the screen,
though I usually prefer to have them follow along on hard copy, using the trace window to
keep myself on track.

You don’t need to show lots of objects on the screen at once, but you do sometimes need to
make them large. For instructional purposes, a couple dozen objects on the screen at once
seems to be more than enough. Consequently, ALGAE does not place much emphasis on
speedy rendering of large numbers of objects. On the other hand, for the text in these objects
and their connecting pointers to be visible in a large lecture room or on a conventional TV
monitor (conventional TV bandwidth imposes some pretty severe constraints on text presen-
tation and line drawing), you often need to make everything quite large.

1.3 Platforms Supported

Version 3.0 of ALGAE software is written entirely in Java and should be executable on almost any
system. Animations created using ALGAE can be distributed and run as standalone applications or
posted as Java web applets.

The current version is compiled using Java 6. The project build is supported using Apache’s
ant|[1].

Chapter 2

Installation

2.1 Obtaining ALGAE

ALGAE is available via anonymous ftpat ftp . cs.odu.eduinthe directory /pub/zeil/algae.

2.2 Configuration and Installation

1. Unpack the ALGAE . zip file into a directory of your choice. For the sake of exposition, I
will assume throughout this section that you have chosen to place this in a directory named
algae-root.

2. You will need a copy of the Sun Java Help library, thbasic. jar [6]. If one is not included
in the algae-root/A1gAE directory, find a copy on the net and place it there.

3. In the algae-root/A1gAE directory, run
ant

This should build the A1gAE . versionnumber . jar file containing the Java engine.

2.3 Testing your installation

The installation includes various sample animations of both Java and C++ code. The Java anima-
tions will be found in the algae-root directories other than the main algae-root/A1gAE directory.
You should be able to compile any of these by giving the command

ant

ftp://ftp.cs.odu.edu/pub/zeil/algae/algae-3.0.zip

6 CHAPTER 2. INSTALLATION

and to execute them by giving the command

ant run

Chapter 3

Running an Animation

When an ALGAE animation is launched, you will be presented with a blank animation window.
From the Algorithms menu, you can select any of several operations you would like to perform,
e.g., inserting an item into a binary search tree, removing an item, do a post-order traversal, etc.

At selected points in the algorithm, the program will pause and draw a picture of the current
data state. The picture in|Figure 1.1|is an example of this.

Boxes in the picture that represent data allocated on the heap can be repositioned by dragging
them with the mouse, if you are unhappy with the automatic layout.

The controls below the main drawing area should be reminiscent of a CD/DVD player. You can
move forward one step at a time, or move continuously without pausing. You can also “rewind” an
animation to re-examine details that you might have missed.

That’s basically all there is to it. More details on the available commands and options may be
obtained via the “Help” menu.

3.1 Deploying an Animation

The most common way to deploy an animation is as an applet.
For this purpose, you will need 4 things:

1. The compiler ALGAE engine, A1gAE . version. jar
2. The Sun Java Help library, Jhbasic. jar
3. Ajar file (or collection of class files) representing your specific animation, and

4. An HTML file that invokes the animation as an applet.

Typically, this will contain an applet element similar to the following

7

CHAPTER 3. RUNNING AN ANIMATION

<applet
code="yourAnimationMainClassName”
archive="yourAnimationName . jar ,

../ AlgAE/AIgAE .3.0.jar,../ AlgAE/jhbasic.jar”
width=10 height=10
alt="1Is._Java_.disabled._on_this._browser?”>

Oops.
This browser does not display Java applets.
</applet>

Of course, you will need to adjust the paths to the ALGAE and jhbasic jars according to
your own preference.

By default, ALGAE applets will pop up as a separate window when the page is visited. If you
prefer to have the animation display within the page, add the inline parameter and give a
sufficiently large height and width:

<applet
code="yourAnimationMainClassName”
archive="yourAnimationName . jar ,

../ AlgAE/AIgAE .3.0.jar,../ AlgAE/jhbasic.jar”
width=800 height=700
alt="1Is._Java._.disabled._on_this._browser?”>
<param name="inline” value="1"/>

Oops.
This browser does not display Java applets.
</applet>

Place these in a webserver-accessible directory and publish the URL of the HTML page.

Chapter 4

Animating a Java Algorithm

This section presents the major capabilities of ALGAE via a series of examples.

4.1 Animation with Arrays

The first example will be relatively simple, because most of the rendering decisions will correspond
to ALGAE’s built-in defaults.

Our starting point will be the Java class in [Listing 4.1.1) which contains three well-known
sorting algorithms.

Listing 4.1.1: An ADT for Disjoint Sets

package edu.odu.cs.AlgAE.Demos;

public class Sorting0 {

/1

/! Based on Malik, "C++ Programming [From Problem Analysis to Program Design]”
/1 chapter 10

/1

public static
void bubbleSort(int list[], int length)
{

int temp;

int iteration;

int index;

10 CHAPTER 4. ANIMATING A JAVA ALGORITHM

for (iteration = 1; iteration < length; iteration++)
{
for (index = 0; index < length — iteration; index++)
if (list[index] > list[index + 1])
{
temp = list[index];

list[index] = list[index + 1];
list[index + 1] = temp;

}

public static
void selectionSort(int list[], int length)
{

int index;

int smallestlndex;

int location;

int temp;

for (index = 0; index < length — 1; index++)
{
//Step a
smallestIndex = index;
for (location = index + 1; location < length; location++)
if (list[location] < list[smallestIndex])
smallestIndex = location;
//Step b
temp = list[smallestIndex];
list[smallestIndex] = list[index];
list[index] = temp;

public static
void insertionSort (int list[], int listLength)
{

int firstOutOfOrder, location;

int temp;

for (firstOutOfOrder = 1; firstOutOfOrder < listLength;
firstOutOfOrder ++)

4.1. ANIMATION WITH ARRAYS 11

if (list[firstOutOfOrder] < list[firstOutOfOrder—1])

{
temp = list[firstOutOfOrder];
location = firstOutOfOrder;
do
{
list[location] = list[location — 1];
location——;
}
while (location > 0 && list[location — 1] > temp);
list[location] = temp;
}
}
}

e You can place your code in any package you wish, or forgo a package entirely. I place
my copy in edu.odu.cs.AlgAE.Demos because I wish to make it part of the ALGAE
distribution. You should probably not use a more appropriate designation for your own work.

4.1.1 Setting Up An ALGAE Project

The first step is to set up a project structure. I recommend using ant [1] as the main project manager,
though it’s often convenient to do the bulk of the work in an ant-friendly IDE such as Eclipse [2]].

1. Create a directory for the project. Within that project directory create a src directory to hold
your Java code.

2. Then, within the project directory, create a build.xml file for ant. [Listing 4.1.2| shows a
possible structure.

Listing 4.1.2: Ant Build File, build.xml

<project name="AlgAE_Reference_Manual” default="buildJar”

basedir="." xmlns:ac="antlib:net.sf.antcontrib”>
<description>
AIgAE reference manual and sample code
</description>

<!—— set global properties for this build ——>

12

CHAPTER 4. ANIMATING A JAVA ALGORITHM

<property name="project” value="SortingExample” />
<property name="mainClass”
value="edu.odu.cs.AlgAE.Demos. SortingDriver” />

<property name="version” value="3.0" />
<property name="AlgAE. dir” location="../AIgAE”/>

<property name="compile.dest” location="src”/>

<path id="compile.classpath”>
<pathelement location="${AlgAE. dir }/AIgAE.${version }.jar”/>
<pathelement location="${AlgAE. dir }/jhbasic.jar”/>

</path>

<path id="execute.classpath”>
<pathelement location="${project}.jar”/>
<pathelement location="${AIgAE. dir }/AlIgAE.${version }.jar”/>
<pathelement location="${AlgAE. dir }/jhbasic.jar”/>

</path>

<target name="compile”>
<mkdir dir="${compile.dest}” />
<javac srcdir="src” destdir="${compile.dest}”
classpathref="compile.classpath”
excludes="xx/Testx.java” debug="true”
includeantruntime="false”>
<compilerarg value="—Xlint:deprecation”/>
</javac>
</target>

<target name="buildJar” depends="compile”>
<jar destfile="${project}.jar”>
<fileset dir="${compile.dest}”></fileset>
<manifest>
<attribute name="Main—Class”
value="${mainClass }”/>
</manifest>
</jar>
</target>

<target name="run” depends="buildJar”>

4.1. ANIMATION WITH ARRAYS 13

<java classname="${mainClass}”
fork="true”
classpathref="execute.classpath”>
</java>
</target>

</project>

e Change the project name and description as desired.
e The project property is used to name the final Jar file produced as the output.

e The mainClass property names a Java class that will be the default animation driver
to be executed in the produced Jar file. It will also be run by the

ant run

command.

Note that a project (and hence the project’s Jar file) can actually have several animations.
This property establishes only a default selection.

e The version and A1gAE.dir properties are sued to locate the already compiled
ALGAE library and the accompanying jhbasic. jar file.

e The remainder of the file can, for most simple animations, be left unchanged.

If setting up a project directory with Eclipse [2] or other project managers, be aware that
a deliberate design decision is to place the compiled class files into the same directories as
the source code. Although this practice is often discouraged in large projects, individual
ALGAE animations are seldom large. More importantly, the feature of displaying the code
being animated exploits this decision to locate the relevant source code file.

3. Next, create an HTML file (or several files) to invoke the animation(s) in the project, as per
the guidelines in{section 3.1} [Listing 4.1.3|shows an example of such a file. I typically include
basic instructions to the students telling them what kinds of activities they might employ to
explore the animation.

Listing 4.1.3: HTML Applet Support

<html>
<head>
<title>
CS333 Sorting Algorithms
</title>
</head>
<body text="#330000" bgcolor="#F5F5DC”>

14 CHAPTER 4. ANIMATING A JAVA ALGORITHM

<center>
<h1>
CS333 Sorting Algorithms
</h1>
</center>

<p>Quick instructions:

Select a desired algorithm from the

Algorithm
 menu.

Start by generating an array. Keep it small (5—10 elements) —
you’ Il be examining the sorting algorithm behavior in fine
detail .

Once the array is generated, choose a sorting algorithm.

When execution pauses inside of an algorithm, press the ”step” or
”play” buttons to resume.

Observe how each algorithm behaves on random arrays, reversed
arrays, and arrays that you have already sorted.

</p>
<p>
More detailed help is available from the HelpHelp menu.

</p>

<center>

<applet
code="edu.odu.cs.cs333.animations.CS333SortingAnimation”

4.1. ANIMATION WITH ARRAYS 15

archive="CS333Sorting. jar,
../ AIgAE/AIgAE .3.0. jar ,../ AlgAE/jhbasic .jar”
width=10 height=10
alt="Is_Java_.disabled._on_this _browser?”>
Oops.
This browser does not display Java applets.
</applet>
</center>

<hr/>
<center>
<hr width="75%"></center>

<center>Email me at
<i>

zeil@cs .odu.edu

</i>
</center>

</body>
</html>

4. Finally, add (or build) your animation source code within the src directory. As with all Java
code, if your classes are declared inside packages, you will need to construct the directory
structure corresponding to the package structure.

4.1.2 Creating the Driver

Each ALGAE animation starts its execution from a driver. The driver must be a subclass of
edu.odu.cs.zeil.AlgAE.Animation. Animation itself is a subclass of JApplet and
therefore can be run as a web applet. It also, however, provides support for being run as a standalone
application. This is often more convenient during development and debugging.

The basic structure of a driver is shown below:

package edu.odu.cs.AlgAE.Demos;

import edu.odu.cs. zeil.AlgAE. Animation;
import edu.odu.cs.zeil.AlgAE. Server. MenuFunction;

public class SortingDriver extends Animation {

16 CHAPTER 4. ANIMATING A JAVA ALGORITHM

public SortingDriver () {
super (”Sorting . Algorithms”, true);
}

@Qverride
public String about() {
return "Demonstration._of_Sorting_Algorithms,\n” +
“prepared .for.CS.333,_Advanced.Data_Structures\n” +
”and_Algorithms,.Old_.Dominion_.University\n” +
”Summer.2011";

global data structures

@OQOverride
public void buildMenu () {

menu function registrations

public static void main (String[] args) {
SortingDriver demo = mew SortingDriver ();
demo . runAsMain ();

Several things are worth noting about the above code.

e You can place your code in any package you wish, or forgo a package entirely. You can name
this class anything you wish.

e The imports shown here will probably be required. Others may be needed as well.

e The argument of the super call within the constructor is used to supply a title for any
windows opened by the animation.

4.1. ANIMATION WITH ARRAYS 17

e The about () function supplies a short message that can be accessed from the Help menu
in the running animation.

e The buildMenu () function is the heart of the driver. it is discussed below in[section 4.1.2]

e As noted earlier, animations can be run as applets or, with the main () function shown here,
as a standalone application.

Planning the Menu

The “Algorithms” menu for an animation is where the user goes to launch the ADT functions.
Typically, this menu will contain one item for each of the major ADT operations, plus one or more
items for creating new instances of or reinitializing an instance of the ADT.

Looking again at we can see that this ADT is fairly simple. We can expect to
have three menu items, one to invoke each of the the three sorting algorithms. In addition, we will
want to add menu items to set up an array for sorting. I have opted for one menu item to create an
randomly arranged array, and one to create a reversed array.

These menu items are created in the driver’s buildMenu () function (Listing 4.1.4).

Listing 4.1.4: Creating the Algorithms Menu

package edu.odu.cs.AlIgAE.Demos;

import edu.odu.cs. zeil.AlIgAE. Animation;
import edu.odu.cs.zeil.AlgAE. Server. MenuFunction;

public class SortingDriver0 extends Animation {

public SortingDriver0 () {
super (”Sorting ~Algorithms”, true);
}

@Override
public String about() {
return "Demonstration_of_Sorting_Algorithms,\n” +
"prepared _for.CS.333,_Advanced.Data_Strcutures\n” +
”anduAlgorithms,uOlduDominionuUniversity\n” +
”Summer..20117;

private int[] array = new int[8];

18

CHAPTER 4. ANIMATING A JAVA ALGORITHM

@Override
public void buildMenu () {

registerStartingAction (new MenuFunction () {
@Override
public void selected () {
generateRandomArray (array .length);

}
|OF
register (”Generate_a.random._array”, new MenuFunction () {
@Override
public void selected () {
generateRandomArray (array .length);
}
1)
register (”Generate_a.reversed._array”, new MenuFunction () {
@QOverride
public void selected () {
generateReverseArray (array.length);
}
|DF
register (”Bubble_.Sort”, new MenuFunction () {
@Qverride
public void selected () {
Sorting . bubbleSort (array, array.length);
}
IOF
register (”Selection.Sort”, new MenuFunction () {
@Override
public void selected () {
Sorting .selectionSort (array, array.length);
}
1)
register (”Insertion._Sort”, new MenuFunction () {

@Override
public void selected () {
Sorting .insertionSort (array, array.length);

4.1. ANIMATION WITH ARRAYS 19

private

{

}

private

{

I9K

void generateRandomArray (int n)

if (n != array.length) {
array = new int[n];
}

for (int i = 0; i < n; ++1i) {
array[i] = (int)((double)(2*xn) *x Math.random ());
}

void generateReverseArray (int n)

if (n != array.length) {
array = new int[n];
}

array[n—1] = (int)(3.0 % Math.random ());
for (int i = n—-2;1 >=0; ——1i) {

array[i] = array[i+1] + (int)(3.0 * Math.random ());
}

public static void main (String[] args) {

SortingDriver0 demo = new SortingDriver0 ();
demo . runAsMain ();

e Each Algorithm menu item is created by calling register with a string to appear in the
menu and a MenuFunction object for which a selected () function carries the actions
we want performed when that item is chosen.

— Three of these simply invoke the three sorting algorithms on the private array array.

20 CHAPTER 4. ANIMATING A JAVA ALGORITHM

— The other two invoke a pair of functions to fill the array with different patterns of random
numbers.

— The order in which these MenuFunct ion objects are registered determines the order
in which they will appear in the Algorithms menu.

o A special registration function, registerStartingAction,is used to designate a func-
tion to be executed before the user is allowed to select anything from the Algorithms menu.

4.1.3 Displaying Global Data

Although it would be possible to run the animation as already developed, doing so would be pro-
foundly boring because, although the desired menu items would be available, there’s no way yet to
see the effect of these.

We would like to be sure that the array we have created will be visible at all times while the
animation is running.

The rules for determining exactly what data objects will be shown during a running animation
are:

1. Objects that are registered as “global” will be shown.

2. Objects that are registered as parameters to a function or as local “variables” to a function
will be shown during any breakpoints within that function.

3. Objects will be shown if they are registered as “components” of another object that is already
being shown.

4. Objects will be shown if they are registered as “connected” from another object that is already
being shown.

At the moment, we have not done any of these things, so no data objects will be shown.
Because we want array to be shown at all times, no matter what function is executing, we
will register it as global:

public void buildMenu () {

registerStartingAction (new MenuFunction () {
@Override
public void selected () {
generateRandomArray (array.length);
globalVar(”1list”, array);

})s

4.1. ANIMATION WITH ARRAYS 21

myArray:

Adams Baker Carter Davis

Figure 4.1: A Sorted Array of Strings

myArray:

Adams Davls

Baker
Carter

Figure 4.2: A More Honest Sorted Array of Strings

Global variables can be registered from within any MenuFunct ion (or within any function called
by a MenuFunction). globalVar () requests that an object be shown directly. A variant,
globalRefVar () requests that a pointer/arrow be drawn that connects to the object. Each of
these functions receives both a string to use as a name for the object when it is drawn and the
reference to the actual object itself.

This driver can be executed (within the reference manual project directory) as Sort ingDriverl.

4.1.4 The Fine Art of Fibbing

One of the practical considerations in preparing an animation for students is to realize that too much
honesty is not always the best policy. Suppose, for example, that instead of sorting integers, we had
decided to sort strings. We might envision a picture of a sorted array as shown in

But any good Java programmer knows that is a much more accurate portrayal of an
array of strings.

Nonetheless, if I wanted to explain a sorting algorithm I would prefer the simpler picture in
The extra pointers are a distraction. Trying to visualize the movement of elements in

22 CHAPTER 4. ANIMATING A JAVA ALGORITHM

the array as shifting pointers rather than as direct rearrangements of the data is simply not as clear.
ALGAE provides several mechanisms by which an animation designer may opt to “fib” to
viewers in support of better instructional clarity. One of the most pervasive of these is in allowing
the animation designer to choose whether to present variables and data members of objects “inline”
or as connections/references.
Another way in which a designer may “fib” to viewers is to selectively rewrite the source code
displayed during the animation, as we will see shortly.

4.1.5 Inserting Breakpoints

The animation at the end of [subsection 4.1.3|shows only the final outcome of executing each func-
tion. We can see, for example, that each of the sorting algorithms does indeed sort the array, but we
are not able to follow the intermediate steps of each sorting algorithm.

The solution is to introduce breakpoints into the sorting algorithms. More specifically, there are
two steps:

1. Create a (simulated) activation record for each function
2. Use that activation record to create breakpoints.

An activation record is created by the call Animation.activate (...). A breakpoint is cre-
ated by the activation record’s member function breakHere (.. .). Here, for example, we can
see the process of creating an activation record for the bubble sort function and setting a breakpoint
at the very start of that function:

public static//!

void bubbleSort(int list[], int length)

{
ActivationRecord arec = Animation.activate (Sorting2.class); //!
arec .breakHere (” starting _bubble_sort”); //!

e The parameter to the act ivate function fulfills two purposes:

1. It helps the source code viewer to locate the appropriate file of source code.

2. If it is supplied with a this reference (in a non-static member function), then that
parameter is also displayed as part of the visible rendering of the activation stack.
In this case, the function being animated is static, so we supply the class object instead
of a this reference.

e The parameter to the breakHere () function is a descriptive string that is displayed on
the status line when the breakpoint is encountered. Use these strings to establish a running
commentary on the progress of the algorithm:

4.1. ANIMATION WITH ARRAYS 23

public static//!
void bubbleSort(int list[], int length)

{
ActivationRecord arec = Animation.activate (Sorting2.class); //!
arec . breakHere (”starting _bubble_sort”).show (); //!
int temp;
int iteration ;
int index;
for (iteration = 1; iteration < length; iteration++)
{
arec .breakHere (”start._a_.pass.over.the_array”); //!
for (index = 0; index < length — iteration; index++)
{/"
arec . breakHere (”"compare_list [index]_.to_list[index+1]"); //!
if (list[index] > list[index + 1])
{
arec .breakHere (7 list[index]_.and_list[index+1]_are_out_of_order.—._swap.tl
temp = list[index];
list[index] = list[index + 1];
list[index + 1] = temp;
}
R
arec . breakHere ("completed._this._.pass._over._the._array”); //!
}
arec . breakHere ("completed _bubble_sort”); //!
}

Many of the statements in the above listing end with the comment marker //!. This marker is
a signal for selective rewriting by the source code viewer.

e For any source code line that contains a / /!, the source code viewer will not display the part
of that line from the start of the line up to and including the //!.

o If the remaining part of the line aftera // ! has no non-whitespace characters, then the entire
line is omitted from the source code viewer.

The statements that create the activation records and the breakpoints are terminated with a / /!
marker so that they are never shown to the students running the animation. This is an example of
pnambic (Pay No Attention to the Man BehlInd the Curtain) behavior [4], or, as I have described it
earlier, the fine art of fibbing to the students for instructional purposes.

24 CHAPTER 4. ANIMATING A JAVA ALGORITHM

This version of the system (including breakpoints in all three sorting algorithms) can be exe-
cuted (within the reference manual project directory) as Sort ingDriver2. You can see that the
individual changes to the array are visible at each step.

4.1.6 Displaying Local Data

The most recent version of the animation still does not provide enough information to allow students
to understand what is happening. The primary problem now is that the array is the only data being
shown. But understanding the behavior of these algorithms depends on knowledge of the values of
the various indices, loop counters, and temporary variables used within the algorithm.

To add local data to the display, we register desired variables or expressions with the breakpoint.
There are two kinds of local data to be displayed: parameters and variables.

For example, this code

public static//!
void bubbleSort(int list [], int length)
{
ActivationRecord arec = Animation.activate (Sorting3.class); //!
arec .refParam (”1list”, list).param(”length”, length).breakHere(”starting _bubble

adds two parameters to the display of the breakpoint.

o In this case, we have opted to display the 1ist parameter as a pointer (because the array
itself is already being displayed as a global variable. The 1ength parameter, however, is

displayed inline (Figure 4.3)).

e The two parameters are labeled “list” and “length” (matching the formal parameter names of
the function) and the actual values of these parameters are also passed in each call.

e [t’s convenient, but not necessary to combine all the breakpoint manipulation into one line. It
could be broken up:

public static//!
void bubbleSort(int list[], int length)
{
ActivationRecord arec = Animation.activate (Sorting3.class); //!
arec .refParam (” list”, list);//!
arec .param(”’length”, length)//!
arec . breakHere (”starting .bubble_sort™); //!

As we advance further into the algorithm, we add the second type of local display — variables:

public static//!
void bubbleSort(int list[], int length)

4.1. ANIMATION WITH ARRAYS 25

r— I bubbleSort (Llist: ,J I
9]¢ [n]3[12][1]3]

Figure 4.3: Displaying Parameters of a Call

{
ActivationRecord arec = Animation.activate (Sorting3.class);//!
arec .refParam (7 1list”, list).param(”length”, length).breakHere(”starting _bubble_sort”
int temp;
int iteration ;
int index;
for (iteration = 1; iteration < length; iteration++)
{
arec.var(”iteration”, iteration);//!
arec . breakHere (”start._a.pass.over.the_array”);//!
for (index = 0; index < length — iteration; index++)
{/n
arec.var(”index”, index);//!
arec . breakHere (”"compare_list[index]_.to_list[index+1]"); //!
if (list[index] > list[index + 1])
{
arec .breakHere (7 list[index]_.and_list[index+1]_.are_out_of _order.—.swap._then
temp = list[index];
list[index] = list[index + 1];
list[index + 1] = temp;
}
A
arec . breakHere (”completed._this _pass.over.the_array”); //!
}
arec . breakHere ("completed .bubble._sort”); //!
}

e The var () calls are similar to those for registering parameters, but variables will be dis-
played outside of the call stack.

e Again, the two parameters for each variable registration consist of a name for the variable to

display and a value to be displayed (Figure 4.4).

e Although not used here, we also have the option of displaying a local variable as a reference

26 CHAPTER 4. ANIMATING A JAVA ALGORITHM

bubbleSort { Llist: ,

| ‘
list:
IDEOEDag

Figure 4.4: Displaying Local Variables

arrow to a separately allocated object. The call for doing so is called refVvar ().

What, precisely, does the ALGAE syetem “remember” when a parameter or variable is reg-
istered? It remembers the reference value stored in the registered value. So, when we say, for
example,

public static//!
void bubbleSort(int list[], int length)
{
ActivationRecord arec = Animation.activate (Sorting3.class);//!
arec .refParam (7 1list”, list).param(”length”, length).breakHere(”starting._bubb

what is registered for the parameter “list” is the reference (address) stored in the variable 1ist. For
the parameter “length”, things are a touch more complicated. 1ength is a primitive (int) variable.
It does not contain a refernece. However, when param (. ..) or the other registration functions
are called, Java will automatically convert the int value to an Integer object, and it will be the
address of that temporary variable that is remembered.

All this is fine as long as the value of the primitive does not change (or, in general, as long as the
reference stored in a parameter or variable does not change). So 1ist is fine — its value changes
but its address does not. 1ength is also fine — the sorting algorithm does not change the value of
this primitive.

Looking down a little further, though we see the local variables iteration and index,
which do change value repeatedly.

public static//!
void bubbleSort(int list[], int length)

{
ActivationRecord arec = Animation.activate (Sorting3.class); //!
arec .refParam (7 list”, list).param(”length”, length).breakHere(”starting._bub
int temp;

int iteration;

4.1. ANIMATION WITH ARRAYS 27

int index;

for (iteration = 1; iteration < length; iteration++)
{
arec.var(”iteration”, iteration);//!
arec . breakHere (”start._a_pass._over_the_array”);//!
for (index = 0; index < length — iteration; index++)
{11
arec .var(’index”, index);//!

arec . breakHere ("compare_list[index]_.to_list[index+1]"); //!
if (list[index] > list[index + 1])

{
arec . breakHere (7 list[index].and._list[index+1]_.are_out_of_order.—_swap._th
temp = list[index];
list[index] = list[index + 1];
list[index + 1] = temp;
}

R
arec . breakHere ("completed._this._pass._over._the._array”); //!

}

arec . breakHere (”completed _bubble_sort”); //!

}

When a primitive changes value or an object variable changes its reference value, then we must
re-register it using the same param/var function and the same label. The new value then replaces
the old one. In this case, iteration and index are re-registered at the start of each iteration of
their respective loops, which corresponds to the only times at which their values change.

One last detail remains to be considered. Once registered for display, a parameter or variable
will normally be displayed until execution returns from the function. That’s not always appropriate.
For example, the last registered values of iteration and index would be displayed at the final,
“completed bubble sort” although, technically, neither variable exists outside of their respective
loops. You can designate a more limited lifetime for displayed variables by creating and destroying
a “scope” over the relevant portion of the program.

public static//!
void bubbleSort(int list[], int length)

{
ActivationRecord arec = Animation.activate (Sorting3.class);//!
arec .refParam (7 1list”, list).param(”length”, length).breakHere(”starting._bubble_sort’
int temp;

int iteration ;
int index;

28 CHAPTER 4. ANIMATING A JAVA ALGORITHM

for (iteration = 1; iteration < length; iteration++)
arec .pushScope (); //!
arec.var(”iteration”, iteration);//!
arec . breakHere(”start_a_pass_over_the_array”); //!
for (index = 0; index < length — iteration; index++)
{1

arec . pushScope (); //!

arec.var(”index”, index); //!

arec . breakHere ("compare_list[index]_to_list[index+1]"); //!
if (list[index] > list[index + 1])

{
arec .breakHere(”list[index]_.and_list[index+1]_.are_out_of_order.
temp = list[index];
list[index] = list[index + 1];
list[index + 1] = temp;
}

arec .popScope (); //!
Y
arec . breakHere (”completed._this _.pass.over.the_array”); //!

arec .popScope (); //!

}

arec . breakHere ("completed _bubble_sort™); //!

Any new variables introduced after a pushScope call are forgotten upon execution of the
matching popScope call.

This version of the system (including parameters and local variables in all three sorting algo-
rithms) can be executed (within the reference manual project directory) as SortingDriver3.
This is now an animation that could be useful to students trying to learn these algorithms.

4.1.7 Decoration

Although potentially useful, the prior version of the sorting demo is still not quite as clear as we
might wish. Understanding what is going on with array manipulation requires mentally correlating
the values of various indices against the data in corresponding positions in the array. Even with
relatively small arrays, it can be easy to slip up.

Sometimes it is useful to add explicit decoration to a breakpoint that can focus the viewer’s
attention on specific data elements.

Two useful ways to add decorations are by adding connections to the diagram or by exploiting
color changes.

4.1. ANIMATION WITH ARRAYS 29

Decorative Connections

The package edu.odu.cs.zeil.AlgAE.Utilities contains, among other things, a num-
ber of wrapper (a.k.a. adapter) classes [3] for data that “indexes” into other collections. These
include wrappers for Java iterators and, the one that we will use, an Index wrapper for integers
that are used to index into one or possibly two different arrays or Iterable structures.

An index is created via a constructor that takes two parameters. The first is the integer value of
the index, and the second is the array or java.util.Iterable container that it indexes into.
An Index is rendered like an integer value but with a colored arrow pointing to the component of
the array/container indicated by that position value.

Here I have decorated both the index and smallest Index variables in the bubble sort:

public static//!
void bubbleSort(int list[], int length)

{
ActivationRecord arec = Animation. activate (Sorting3.class); //!
arec .refParam (7 1list”, list).param(”length”, length).breakHere(”starting._bubble_sort’
int temp;

int iteration;
int index;

for (iteration = 1; iteration < length; iteration++)
arec . pushScope (); //!
arec.var(”iteration”, new Index(iteration, list));//!
arec . breakHere (”start._a_pass._over_the_array”);//!
for (index = 0; index < length — iteration; index++)
{11

arec .pushScope (); //!

arec.var(”index”, new Index (index, list));//!

arec . breakHere (”"compare.list [index]_.to_list[index+1]"); //!
if (list[index] > list[index + 1])

{
arec . breakHere (7 list[index].and._list[index+1]_are_out_of _order.—.swap._th
temp = list[index];
list[index] = list[index + 1];
list[index + 1] = temp;
}

arec .popScope (); //!
Y
arec . breakHere ("completed._this _pass._over_the_array”); //!

arec .popScope (); //!

30 CHAPTER 4. ANIMATING A JAVA ALGORITHM

arec . breakHere ("completed._bubble_sort”); //!

}

so that each will be shown pointing to the specific element of the 1ist array that is being refer-
enced.

This version of the sorting demo can be executed (within the reference manual project directory)
as SortingDriver4. This is, by and large, the version that I actually distributed to my class.

Decorative Color

Color changes can also be an effective way to draw a viewer’s attention to a specific group of ob-
jects. The ActivationRecord class supports operations highlight (object) andhighlight (object
color) to create temporary color changes. Their effects will end upon returning from the current
function and will be suspended during calls from that function. (Permanent color changes are dis-
cussed later in[section 4.2])
For example, in the insertionSort, we might consider highlighting the element being com-
pared against the temp value and also using a fixed color to distinguish the already sorted portion
of the array from the portion that has not been checked:

public static//!

void insertionSort (int list[], int listLength)

{
ActivationRecord arec = Animation.activate (Sorting3.class); //!
arec .refParam (”1list”, null).param(”listLength”, listLength); //!
arec . breakHere (” starting._insertion._sort”); //!
int firstOutOfOrder, location;
int temp;

for (firstOutOfOrder = 1; firstOutOfOrder < listLength;
firstOutOfOrder++)
{/n
arec.var (7 firstOutOfOrder”, new Index (firstOutOfOrder, list)); //!
arec . breakHere ("move_list [firstOutOfOrder].into._place”); //!
if (list[firstOutOfOrder] < list[firstOutOfOrder —1])
{
temp = list[firstOutOfOrder];
location = firstOutOfOrder;
arec.var(’temp”,temp). var(”location”, new Index(location, list));//
arec . breakHere ("temp._holds._.the_value_we_want_to_.insert”); //!

do

{
arec . highlight(list[location—1]);//!
arec . breakHere (”shift_an_element._up.to._make_.room”); //!

4.1. ANIMATION WITH ARRAYS 31

list[location] = list[location — 1];

arec . breakHere (”then_move_to._.the._.next_.lower_.element”); //!
arec . highlight(list[location—1]);//!

location——;

arec.var(”location”, new Index(location, list));//!

while (location > 0 && list[location — 1] > temp);

arec . breakHere ("Now_we_know._where_to_insert._temp”); //!
list[location] = temp;
arec . highlight(list[location], Color.lightGray);//!

}

arec .breakHere ("Move_to._the._next_unordered._element”); //!
A
arec . breakHere (”Completed_insertion._sort”); //!

e If no color parameter is specified, the highlight function “inverts” the color of the object:
i.e., if the RBG colors are expressed on a 0.0. .. 1.0 scale, then an object of color (r, g, b) is
changed to color (1 —r,1 —g,1 —b).

— Consequently, highlighting the same object a second time actually returns it to its orig-
inal color.

e Alternatively, an explicit color can be selected in a highlight parameter.

Unfortunately, the change shown here will actually have no visible effect. That’s because all
renderable objects actually need to be objects. When we pass an int or other non-class primitive,
they are converted to a corresponding Integer or other container object. That converted object is
what is actually being shown, and because we don’t have a reference to that object, we can’t pass it
toahighlight call.

A possible solution is to actually change the array supplied by the driver from an array of int
to and array of Integer:

public class SortingDriver5 extends Animation {

public SortingDriver5 () {
super (”Sorting _Algorithms”, true);
}

@Override
public String about() {
return "Demonstration_of_Sorting_Algorithms,\n” +

32 CHAPTER 4. ANIMATING A JAVA ALGORITHM

firstoutoforder: 4 I insertionsort (list: , REGECLAED)
|

list:
nn 6 EE 15 13 14

Figure 4.5: Unintended Aliasing

”prepared .for .CS.333,_Advanced._Data_Structures\n” +
”and._Algorithms,_Old_Dominion.University\n” +
”Summer.2011”;

private Integer[] array = new Integer[8];

This, however, requires that the sorting functions be rewritten to work with an array of Integer
as well. The resulting changes are probably not something we want the viewers to see, so we must
engage in some selective rewriting of the source code:

public class Sorting5 {//!

void bubbleSort(Integer list[], int length)//! void bubbleSort(int list[], int len

void selectionSort(Integer list[], int length)//! void selectionSort(int list
void insertionSort (Integer list[], int listLength)//! void insertionSort (int lis
Y

This is easy enough, but it also runs into problems on some(?) Java engines. You will almost
certainly discover that whenever one element in the array is highlighted, any elements containing
the same value will also be highlighted (See [Figure 4.5).

The problem is that, despite being rendered as distinct components of the array, the array is
actually holding references to the actual values on the heap, and, in this case, some pairs of those
are actually shared references to the same object. Consequently, highlighting the one object shared
by two different array elements causes all of those array elements to appear highlighted.

4.1. ANIMATION WITH ARRAYS 33

Now that is a common problem that can arise when designing an animation, but, if you examine
the Sorting Demo code closely, you may be at a loss to find the reason for this sharing. In fact,
there’s some rather strange behavior associated with the Java Integer class. The program in
reveals that some sort of caching is used when int values are converted implicitly to
Integer, with the result that Integer containers holding equal int values will often occupy
the same address.

Listing 4.1.5: Integers Are Shared Unexpectedly

public class IntegerAliasing {

JEES
* A check to see how often the Integer class
% actually returns distinct objects
*
* @param args
*/
public static void main(String [] args) {
Integer[] a = new Integer[100];
Integer[] b = new Integer[100];
for (int ;1 < 1005 ++1)
ij;
;01 < 1005 ++1)
i

=0
] =
=0
] =

i

afi

for (int i
b[i

int count = 0;
for (int i = 0; 1 < 100; ++1)
if (ali]==0blil) {
// a[i] and b[i] contain the same address/reference
++count ;

}

System.out.println (”The_two._arrays.share.

i) i)

+ count + “_elements.”);

}

// Output is typically: The two arrays share 100 elements.

When run with Oracle Java 1.6, this program produces the output
The two arrays share 100 elements.

To counter this problem, the edu.odu.cs.zeil .AlgAE.UtilitiescontainsaDiscreteInteger
container in which no such sharing will occur. DiscreteIntegers are also mutable, making
them a better fit for many algorithms. On the other hand, they do not get the benefit of implicit

34 CHAPTER 4. ANIMATING A JAVA ALGORITHM

conversion to and from int, so the use of DiscreteInteger would require more rewriting of
the sorting algorithms and still more selective rewriting of the source code.

In practice, I generally find that decoration of algorithms takes far more time and effort than
does getting a basic animation with breakpoints and rendering of data. You therefore want to be
careful in pursuing decorations, restricting their use to situations where they truly enhance the
instructional role of the animation.

4.2 Rendering Your Own Structures

The sorting demo that formed the basis of the previous section had a major simplification that
won’t always be available. The only data being drawn were primitives such as int values and
arrays. ALGAE “knows” how to render these types (and a good handful of other types including
Strings and anything that implements Iterable.

In this section, we will consider the problem of portraying a new class type for which no ac-
ceptable set of rendering rules has yet been provided.

The starting point for this discussion will be code for inserting an element into a singly linked
list:

package edu.odu.cs.AlgAE.Demos; //!

public class SinglyLinkedLists {

class nodeType

{
int info;
nodeType link;
public nodeType ()
{

link = null;

}

}

private nodeType head = null;

public void addToFront (int k)

{
nodeType newNode = new nodeType ();
newNode . link = head;
newNode.info = k;

4.2. RENDERING YOUR OWN STRUCTURES 35

head = newNode;

}
public void insert (nodeType p, int value)
{
nodeType newNode = new nodeType ();
newNode . info = value;
newNode. link = p.link;
p-link = newNode;
}

In this example, we will be interested only in demonstrating the process of inserting a node into
a linked list, so the driver will provide only a single menu item:

Listing 4.2.6: Driver For Singly-Linked List Insertion

package edu.odu.cs.AlIgAE.Demos;

import edu.odu.cs. zeil.AlIgAE. Animation;
import edu.odu.cs.zeil .AlgAE. Server. MenuFunction;

public class SLLInsertionDriver0 extends Animation {

public SLLInsertionDriver0 () {
super ("Linked_List_Insertions”, true);
}

@Override
public String about() {
return "Demonstration.of_Linked_.Lists _Algorithms,\n” +
"prepared _for.CS_333,_Programming._and_Problem\n” +
”SolvinguinuC++,u01duDominionuUniversity\n” +
”Fall .20107;

}

SinglyLinkedListsO sll = new SinglyLinkedListsO ();

@Override
public void buildMenu () {

36 CHAPTER 4. ANIMATING A JAVA ALGORITHM

register (”Insert.a.node”, nmew MenuFunction () {

@Override
public void selected () {
generateLL ();
sll .insert(sll.head.link, 50);

}
1)
}
public void generateLL ()
{
sll.head = null;
sll .addToFront(76);
sll .addToFront(34);
sll.addToFront(65);
sll.addToFront(45);
}

public static void main (String[] args) {
SLLInsertionDriver0 demo = nmew SLLInsertionDriver0O ();
demo . runAsMain ();

We can also start with a set of breakpoints in the insertion function.

Listing 4.2.7: Singly-Linked List Insertion Breakpoints

package edu.odu.cs.AlgAE.Demos; //!

import edu.odu.cs.zeil.AlgAE. ActivationRecord;
import edu.odu.cs.zeil .AlgAE. Animation;

public class SinglyLinkedListsO {

class nodeType

{

4.2. RENDERING YOUR OWN STRUCTURES 37

int info;
nodeType link;

public nodeType ()

{
info = —999;//!
link = null;
}
}
public nodeType head = null;

public void addToFront (int k)

{
nodeType newNode = new nodeType ();
newNode. link = head;
newNode.info = k;
head = newNode;
}

public void insert (nodeType p, int value)
{
ActivationRecord arec = Animation. activate (this); //!
arec .refParam (”p”, p).param(”value”, value);//!
arec .breakHere (” starting.insertion™); //!
nodeType newNode = new nodeType (); //! nodeType xnewNode = new nodeType;
arec .refVar (”’newNode”, newNode); //!
arec . breakHere (”allocated _new.node”); //!
newNode.info = value;
arec .breakHere(”inserted _data_into._new.node”); //!
newNode. link = p.link;//! newNode—>link = p—>link;
arec . breakHere ("make_new.node_point._to_p’s_.successor”); //!
p-link = newNode; //! p—>link = newNode;
arec . breakHere (”"make_p_point_to._the._new._node”); //!
arec . breakHere (”Insertion._has_been_.completed”); //!
arec .breakHere (”Trace.the .’ next’_links._and_see_for_yourself_that....”);//!
arec .breakHere(”... the_new.node._was_inserted._right_after_p.”);//!

38 CHAPTER 4. ANIMATING A JAVA ALGORITHM

I this:

T O ,JI

edu.odu. cs. ALQAE. Demos . SinglyLinkedList sogldcc2a3

Figure 4.6: Singly-Linked Lists: Default Rendering

Running this animation (SLLInsertionDriver0) yields disappointing results (Figure 4.6).
That’s because we have supplied no rendering options for the two data types (SinglyLinkedLists
and SinglyLinkedLists.nodeType) being displayed. Consequently, the default rendering
rules are being applied.

4.2.1 Rendering

ALGAE renders objects according to five criteria:
1. What color should be used for the enclosing box?
2. What are the components of the object?
3. How many components should be laid out per row?
4. To what other objects does this one connect?
5. What string represents the value of this object?

For each object, ALGAE consults a chain of renderers, each of which either provides an answer
to these questions or responds with a “don’t know” value, in which case the question is referred
further on down the chain.

Each renderer must implement this interface:

package edu.odu.cs.zeil .AlgAE. Snapshot. Rendering;
import java.awt.Color;

/% %

* Determines how a given object or class of objects should be drawn.
*

* @author zeil

4.2. RENDERING YOUR OWN STRUCTURES 39

*

x/

public interface Renderer<T> {
/% %
*+ What string will be used as the value of this object?
*

* @param obj: object to be drawn

* @return a string or null to yield to other renderers
x/

public String getValue(T obj);

EES

* What color will be used to draw this object?

*k

* @param obj: object to be drawn

* @return a color or null to yield to other renderers
x/

public Color getColor(T obj);

[% *
Get a list of other objects to be drawn inside the

box portraying this one.

@param obj: object to be drawn

* % ¥ x x ¥

% @return an array of contained objects or null to yield to other renderers

*/
public List<Component> getComponents (T obj);

/

*
Get a list of other objects to which we will draw

pointers from this one.

@param obj: object to be drawn

* x ¥ % x ¥

% @return an array of referenced objects or null to yield to other renderers

*/
public List<Connection> getConnections (T obj);

/% %

* Indicates how components will be laid out within the box

*+ representing this object. A return value of 1 will force all
* components to be laid out in a single vertical column. Larger

40 CHAPTER 4. ANIMATING A JAVA ALGORITHM

* return values will permit a more horizontal layout.

*

* A zero value requests that components be laid out in a (more or less) mi
*

* @param obj

% @return max #components per row or a negative value to yield to other re
x/

public int getMaxComponentsPerRow (T obj);

}

Each of the functions in this interface directly pertains to one of the 5 rendering criteria listed above.
There are several ways to associate a renderer with a particular object:

e An object renderer is associated with a specific object reference. Object renderers have a
limited lifetime. They are created via an Act ivationRecord and last only as long as that
function activation is in effect.

Color highlighting is actually a shorthand for creating a renderer that specifies a color but
answers “don’t know” to every other rendering question.

Object renderers have the highest priority of any kind of renderer.
e If a rendering question cannot be resolved by an object renderer, then a search is made for a
type renderer that is bound to the data type of the object or to to one of its base classes.

Type renderers can be bound in one of two ways. The most general way is for an animation
driver to call algae () .render (classObject, renderer) ;. A convenient short-
hand, however, is for a type to implement the CanBeRendered interface:

package edu.odu.cs.zeil.AlgAE. Snapshot.Rendering;

public interface CanBeRendered<T> {
public Renderer<T> getRenderer ();
}

in which case each object of that type supplies a reference to its own type renderer. Some
classes may implement both CanBeRendered and Renderer, in which case getRenderer ()
will simply return this.

o If no object renderer nor type renderer responds to a particular rendering question, then the
final fallback is the default renderer, which behaves as follows:

1. Color: A color is selected based upon a hash of the type name. In essence, the color is
chosen randomly, but all objects of the same type will have the same color.

4.2. RENDERING YOUR OWN STRUCTURES 41

2. Components: If the object is an array or implements Iterable, its elements are shown
as internal components. Otherwise, the object has no components.

3. Layout: Most objects are arranged vertically (1 component per row). However, arrays
alternate horizontal and vertical depending on dimensionality. A one-dimensional array
is laid out horizontally (100 elements per row), a two dimensional array is laid out as a
vertical list of one-dimensional rows, and so on.

4. Connections: none

5. Value: Determined by calling toString ()

Not that this provides a useful default for primitives, Strings, and many other classes.

however, shows that a class that provides no renderer of its own and that
fails to implement toString () will yield rather ugly results.

4.2.2 Rendering Linked List Nodes

Let’s start, then, by creating a renderer for the inner nodeType class from|[Listing 4.2.7]

To make this easy, we will use the CanBeRendered approach (although this increases the
number of lines of code we will need to hide with //!).

We will start by having the node type declare that it will provide its own renderer:

class nodeType
implements CanBeRendered<nodeType >, Renderer<nodeType>//!

{
int info;
nodeType link;

public nodeType ()

{
info = —999;//!
link null ;

}

public Renderer<nodeType> getRenderer () {//!
return this;//!
Y

Now, how shall we actually render this?

1. We’ll choose any color that we like:

42

CHAPTER 4. ANIMATING A JAVA ALGORITHM

public Color getColor(nodeType obj) {//!
return Color.green.darker (); //!
A

2. Each node will have a single internal component, its info field.

public List<Component> getComponents(nodeType obj) {//!
LinkedList<Component> data = new LinkedList<Component>();//!
data.add (mew Component(info, “info”)); //!
return data;//!

A

Actually, we could just as easily treat this as the “value” string of the object, but treating it as
a separate component is more flexible in case we later want to adapt this code to lists of other
kinds of data.

Components can be given optional labels (e.g., “info” in this case). in which case those
labels will appear within the rendering. One might commonly use such labels for components
representing a single data member while eschewing any such labels for components of a more
array-like structure.

3. The 1ink field will supply the only connection leaving this object.

public List<Connection> getConnections (nodeType obj) {//!
LinkedList<Connection> links = new LinkedList<Connection>();//!
Connection ¢ = new Connection(link, 85.0, 95.0);//!
c.setLabel (”1link”); //!
links .add(c); //!
return links;//!

A

When creating connections, we give a range of angles from which the connection may
emerge. In this case, I use the range from 85 to 95 degrees. Zero degrees represents straight
up vertically, and 90 degrees points directly to the right.

These angles have a tremendous effect upon the rendering of connected entities. Consider,
for example, that a typical doubly-linked list node and a typically binary tree node are topo-

4.2. RENDERING YOUR OWN STRUCTURES 43

nevMode: Ithis: Timert (b TR I

info: 76 SETIVR

% info: 65

Figure 4.7: Singly-Linked Lists: Rendering

logically identical - each has a data field and a pair of emerging pointers. But if those pointers
emerge at opposite ends of the node (90 and 270 degrees), then the nodes will tend to arrange
themselves into a straight line. If those pointers emerge from the bottom corners (135 and
225 degrees), then even a fairly degenerate tree will try to arrange itself into the traditional
“inverted-Vs” drawing.

4. Since we only have one internal component, the number of components per row is largely
irrelevant:

public int getMaxComponentsPerRow (nodeType obj) {//!
return 100;//!
A

5. And we won’t need an explicit value string, because we have opted to show the info as a
nested component.

public String getValue (nodeType obj) {//!
return 77 ;//!
A

With these rendering functions, and a similar but even simpler set for the SinglyLinkedLists
class itself, we arrive at an animation (SLLInsertionDriver) that produces images such as in

lure 471

44 CHAPTER 4. ANIMATING A JAVA ALGORITHM

4.3 Continuous Animations

The linked list insertion demo is rather limited, as it runs only a single algorithm. The reason for
this is that it was actually originally intended as an applet that would be embedded (inline) into a
course web page devoted to that specific algorithm.

For that purpose, it might be useful if the algorithm ran itself immediately and continuously as
soon as the web page was visited.

This can be accomplished by making calls to the animated function from the starting action, the
MenuFunction called before any choices are offered to the viewer. In the driver, we add a new
registration:

@OQOverride
public void buildMenu () {

registerStartingAction (new MenuFunction () {
@Override
public void selected () {
getAnimator (). setSpeed (30);
for (int k = 0; k < 1000; ++k) {
generateLL ();
sll .insert(sll.head.link, 50);
try {
Thread.sleep (2500);
} catch (InterruptedException e) {
break ;
}

}
IBE

register (”Insert.a.node”, new MenuFunction () {
@Override
public void selected () {

generateLL ();
sll .insert(sll.head.link, 50);

1)

4.4. USER INTERACTION 45

e Normal menu selections start with the viewer in pausing mode - it will stop at each break-
point. The starting action, however, runs by default in continuous mode. The optional
setSpeed call is used to slow down the default speed with which it moves from break-
point to breakpoint.

e Similarly, the s1eep call at the end helps inject a slight pause between each restart of the
algorithm.

e Rather than looping forever, I prefer to use a loop like the for loop shown here to repeat the
demonstration a large but finite number of times. The regular Algorithm menu function can
be kept available if someone were to stay on the page long enough for this loop to complete.

4.4 User Interaction

Because ALGAE is actually executing the code being animated, rather than simply displaying a
pre-determined sequence of pictures, an ALGAE animation can accept user inputs and demonstrate
how the algorithm would react to those.

For example, we might alter the driver for the (non-continuous) linked list insertion function as
follows:

@Override
public void buildMenu () {
register (”Insert.a.node”, new MenuFunction () {

@OQOverride
public void selected () {
generateLLL ();
String val = promptForInput(”What_onumber_to_insert?”, "[0—-9]+");
int value = Integer.parselnt(val);
sll .insert(sll.head.link, value);

1)

e The promptForInput function takes two parameters. The first is a prompt string that is
displayed in a pop-up activation box. The second is a regular expression describing a valid
input string. If the user responds with a string that does not match this pattern, he or she will
be prompted again for a new input.

46

CHAPTER 4. ANIMATING A JAVA ALGORITHM

e Another mechanism for interaction is provided by the I/O streams Animation.in and
Animation.out, which can be thought of as analogues of the more conventional System. in
and System. out. These streams, however, read and write from the I/O pane located in the
lower right of the animation (Figure 1.1)).

Chapter 5

Animating a C++ Algorithm

Version 3.0 of ALGAE no longer supports direct animation of C++ code. I hope to restore this
ability in the near future.

However, by using the selective rewriting facility of the source code viewer, one can easily
portray a set of animated Java algorithms as C++, as pseudo-code, or as almost any other language.
C++ is a particularly easy case because so much code in that language is also valid Java code.

For example, for one of my classes I wished to animate the following sorting algorithms taken
from the course textbook [5]]:

void bubbleSort(int list[], int length)

{
int temp;
int iteration;
int index;
for (iteration = 1; iteration < length; iteration++)
{
for (index = 0; index < length — iteration; index++)
if (list[index] > list[index + 1])
{
temp = list[index];
list[index] = list[index + 1];
list[index + 1] = temp;
}
}
¥
void selectionSort(int list[], int length)
{

int index;

47

48 CHAPTER 5. ANIMATING A C++ ALGORITHM

int smallestlndex;
int location;
int temp;

for (index = 0; index < length — 1; index++)

/] Step a
smallestIndex = index;

for (location = index + 1; location < length; location++)
if (list[location] < list[smallestIndex])
smallestIndex = location;

//Step b
temp = list[smallestIndex];
list[smallestIndex] = list[index];
list[index] = temp;

void insertionSort (int list[], int listLength)
{

int firstOutOfOrder, location;

int temp;

for (firstOutOfOrder = 1; firstOutOfOrder < listLength;
firstOutOfOrder ++)
if (list[firstOutOfOrder] < list[firstOutOfOrder—1])
{
temp = list[firstOutOfOrder];
location = firstOutOfOrder;

do
{

list[location] = list[location — 1];
location——;

}

while (location > 0 && list[location — 1] > temp);

list[location] = temp;

To do this, I simply created a basic Java package structure:

49

package edu.odu.cs.cs333.animations; //!

import edu.odu.cs.zeil.AlgAE. ActivationRecord; //!
import edu.odu.cs. zeil.AlgAE. Animation; //!

public class Sorting {//!

/1

// Based on Malik, "C++ Programming [From Problem Analysis to Program Design]”
/1 chapter 10

/1l

A

marking the new Java statements with a trailing //! so that they would not be displayed by the
source code viewer.

I then pasted the C++ code into the middle of the package and added “public static”to
each function.

package edu.odu.cs.cs333.animations; //!

import edu.odu.cs.zeil.AlgAE. ActivationRecord; //!
import edu.odu.cs.zeil.AlgAE. Animation; //!

public class Sorting {//!

/1

// Based on Malik, "C++ Programming [From Problem Analysis to Program Design]”
/1 chapter 10

/1l

public static//!
void bubbleSort(int list[], int length)
{

int temp;

int iteration;

int index;

for (iteration = 1; iteration < length; iteration++)

{

for (index = 0; index < length — iteration; index++)

50

}

CHAPTER 5. ANIMATING A C++ ALGORITHM

if (list[index] > list[index + 1])

{
temp = list[index];
list[index] = list[index + 1];
list[index + 1] = temp;

}

public static//!
void selectionSort(int list[], int length)

{
int
int
int
int

for

{

index ;
smallestlndex ;
location ;
temp ;
(index = 0; index < length — 1; index++)
/] Step a
smallestIndex = index;
for (location = index + 1; location < length; location++)
if (list[location] < list[smallestIndex])
smallestIndex = location;
//'Step b
temp = list[smallestIndex];
list[smallestIndex] = list[index];

list[index] = temp;

public static//!
void insertionSort (int list[], int listLength)

{
int
int

firstOutOfOrder, location;
temp ;

for (firstOutOfOrder = 1; firstOutOfOrder < listLength;

firstOutOfOrder ++)
if (list[firstOutOfOrder] < list[firstOutOfOrder—1])

{

temp = list[firstOutOfOrder];

51

location = firstOutOfOrder;

do
{
list[location] = list[location — 1];
location——;
}
while (location > 0 && list[location — 1] > temp);
list[location] = temp;
¥
}
A

The resulting Java code is, in fact, the starting point for the example given earlier in
In many cases, the process is a little more involved than that, but the principle remains the same.

For example, a block of C++ code to walk a linked list

void traverse (Nodex head)

{

Node* current = head;
while (current != 0)

{

cout << current—>data << endl;
current = current—>next;

}

will need to be rewritten almost entirely. Even this is not as bad as it seems, however, because the
equivalent Java code still exhibits a one-to-one correlation among the statements:

void traverse (Node head)//!void traverse (Nodex head)

Node current = head;//! Nodex current = head;

while (current != null)//! while (current != 0)
System.out. println (current.data); //! cout << current—>data << endl;
current = current.next; //! current = current—>next;

I generally start this process by using an editor with a keyboard macro capability to puta //! at
the beginning of each line, then move down line by line, copying everything to the right of the / /!,
pasting it at the start of the line, and making whatever small changes are actually necessary.

52

CHAPTER 5. ANIMATING A C++ ALGORITHM

Bibliography

[1] Apache Software Foundation. The Apache Ant Project. 2011. URL: http://ant .apache.
org/l

[2] Eclipse Foundation. Eclipse. 2011. URL: http://www.eclipse.org/.

[3] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison—Wesley, 2008.

[4] D. Klein. The open channel. IEEE Computer, page 112, November 1981.

[5] D.S. Malik. C++ Programming: From problem analysis to program design. Course Technol-
ogy Ptr, 2010.

[6] Oracle Corp. JavaHelp System. 2011. URL: http://javahelp. java.net/.

53

http://ant.apache.org/
http://ant.apache.org/
http://www.eclipse.org/
http://javahelp.java.net/

	Introduction
	What is AlgAE?
	Design Principles
	Platforms Supported

	Installation
	Obtaining AlgAE
	Configuration and Installation
	Testing your installation

	Running an Animation
	Deploying an Animation

	Animating a Java Algorithm
	Animation with Arrays
	Setting Up An AlgAE Project
	Creating the Driver
	Displaying Global Data
	The Fine Art of Fibbing
	Inserting Breakpoints
	Displaying Local Data
	Decoration

	Rendering Your Own Structures
	Rendering
	Rendering Linked List Nodes

	Continuous Animations
	User Interaction

	Animating a C++ Algorithm

