
Basic Components — Lexical

Steven Zeil

Aug. 28, 2003

Contents

3 Translation 1
3.1 Phases of Translation1

3.1.1 Compilers 1
3.1.2 Interpreters 1

3.2 Lexical . 2

Basic Components of Programming Lan-
guages

1. History

2. Classification

3. Translation

3 Translation

1. Phases of Translation

2. Lexical: What are thewords?

3. Syntax: What is thegrammatical structurecombining the words
into sentences?

4. Semantics: What do the sentencesmean?

3.1 Phases of Translation

Translators are divided into

• compilers, that produce machine code as output

• interpreters, that directly execute the source program

3.1.1 Compilers

Semantic
Analysis

Analysis
Lexical

Syntax
Analysis

Generation
Code

Optimization

����������	
������	

��
���	�����������	 Back End

������	����
����������������	

��	����������

Front End

3.1.2 Interpreters

����������	
���
��	

�
���������������������

�
�����������������������

����� �"!$#&% ')(

Analysis
Lexical

Execution

����������	
������	

 ����	����

�����������������
 ���

���������������������

1

Basic Components — Lexical 2

In practice, almost all intepreters share at least some front-end
phases with compilers.

Analysis
Syntax

Semantic
Analysis

Analysis
Lexical

����������	
������	

 ����	����

�
 �����
 ����	

��	����������

Front End

�����������������
 ���

���������������������

Execution

“Hybrid” interpreters

• compile for an imaginaryvirtual machine,

• thenemulateexecution of the virtual machine.

Lexical

Generation

Syntax

Analysis

Analysis

Execution

Semantic
Analysis

Code

����������	
������	

Back End

 ����	����

�
 �����
 ����	

��	����������

Front End

�����������������
 ���

���������������������

Hybrid Interpreter

3.2 Lexical

Characters occur in groups that have an “atomic” meaning in a lan-
guage.

Such groups are calledtokens. A language may have many differ-
ent kinds of tokens.

The string of characters that corresponds to a given token is called
a lexeme.

For example, in the code

if X > 1.5 THen

we have
tokens: if identifier greater number then

lexemes: if X > 1.5 THen

Tokens
The kinds of tokens vary from one language to another, but some

common ones are

• constants, operators, identifiers, keywords

– If a keyword is not allowed to be used as an identifier, it is
called areserved word.

In addition, some strings of characters don’t contribute to any to-
kens:

• white space

• comments

Lexemes
The strings that can make up a given kind of token will also vary

between languages. E.g.,

identifiers X, longName, longName, $name, name, Name, NA ME

reserved words if, IF, iF, end, fi, endif

constants ’abc’, “abc”, 0.275, .275, 0.275E3, 0.275G3

We describe the lexemes for a token kind either via grammars or
via regular expressions.

Regular Expressions
In their simplest form, aregular expressionR must be one of

• a single character

• ST , the concatenation of two other regular expressions

• S|T , the choice of two regular expressions
...

Basic Components — Lexical 3

Regular Expressions (cont.)
...

• S∗, 0 or more repetitions of a regular expressionS

– (known as theKleene closure)

• (S), a regular expression within parentheses

Example: integers in most languages look sort of like this:

(+|−)(0|1|2|3|4|5|6|7|8|9)∗

But this isn’t quite right. Why not?

Common Extensions To Regular Expressions

• R+ denotes 1 or more repetitions of R

• R? denotes 0 or 1 occurrence of R

• Rkm denotes betweenm andk occurrences ofR

Common Extensions (cont.)

• [abc . . .] is short for(a|b|c| . . .), where only single characters
can appear between the[].

– The notationa − z is also allowed within[], to denote a
range of consecutive characters.

• Quote characters like′+′ that would otherwise be confused.

With these, we can reduce our description of integer lexemes to

(′+′|−)?[0− 9]+

What do the following regular expressions describe?

• 0 ∗ 1∗

• (0 ∗ 1∗)∗

• (0 ∗ 1∗)+

• (00|01|10|11)∗

What do the following regular expressions describe?

• 0 ∗ 1∗

• (0 ∗ 1∗)∗

• [01]+

• (00|01|10|11)∗

What do the following regular expressions describe?

• 0 ∗ 1∗

• (0 ∗ 1∗)∗

• [01]+

• (00|01|10|11)∗

What do the following regular expressions describe?

• 0 ∗ 1∗

• (0 ∗ 1∗)∗

• [01]+

• (00|01|10|11)∗

What do the following regular expressions describe?

• 0 ∗ 1∗

• (0 ∗ 1∗)∗

• [01]+

• (00|01|10|11)∗

Here are some descriptions of identifier lexemes in different lan-
guages.

• Pascal:
[a− zA− Z][a− zA− Z0− 9]∗

• C: [a− zA− Z][a− zA− Z0− 9]∗

• FORTRAN: [a− zA− Z][a− zA− Z0− 9]50
Can you explain the differences?

What would be the lexemes for the reserved word “for” in C?
in Pascal?

Not all lexical conventions can be described via regular expres-
sions.

• For example, older languages such as FORTRAN and COBOL
had column dependencies.

• ALGOL (published form) used typesetting information:if was
an identifier, butif is a reserved word.

	Translation
	Phases of Translation
	Compilers
	Interpreters

	Lexical

