Basic Components — Lexical

Steven Zeil
Aug. 28, 2003
Contents 3.1.1 Compilers
3___lransiafion 1 SyntaX
BT Phases of Iransiat .
asesof [ransiation e 1 tokens AnaIySIS
B COMPIEES . . . « v v v v e e e e e e e e e 1
BILZ INtEpreters v v v v v e e 1
BZTexical i 2

Lexical
Analysis

source code

Basic Components of Programming Lan-
guages

Semantic
Analysis

meaning

1. History

2. Classification object code Back End

3. [ransiafiol

3 Translation
3.1.2 Interpreters
1. Phases of Transiafion
program output
2. exical: What are thevords?

3. Syntax: What is thgrammatical structureombining the words

into sentences? source code

4. Semantics: What do the sentenocesar?

program input

3.1 Phases of Translation program output
_

Translators are divided into

Lexical

Analysis Execution

e compilers, that produce machine code as output

e interpreters, that directly execute the source program program input

source code

Basic Components — Lexical 2

In practice, almost all intepreters share at least some front-enBor example, in the code

phases with compilers. _
if X > 1.5 THen

we have
tokens tokens: | if | identifier | greater| number| then
lexemes: | if | X | > | 15 |[THen
Lexical
Analysis
Tokens

The kinds of tokens vary from one language to another, but some
common ones are

source code

meaning e constants, operators, identifiers, keywords

program output — If a keyword is not allowed to be used as an identifier, it is

called areserved word

Execution
program input _ "~

In addition, some strings of characters don't contribute to any to-
kens:

“Hybrid” interpreters)
e white space

e compile for an imaginaryirtual machine,
e comments

o thenemulate execution of the virtual machine.

Syntax
Analysis

Lexemes
The strings that can make up a given kind of token will also vary
between languages. E.g.,

tokens

Lexical
Analysis

identifiers X, longName, longName, $name, name, Name, NA ME

Semantic
Analysis

reserved words if, IF, iF, end, fi, endif
source code

Execution

meaning constants 'abc’, “abc”, 0.275, .275, 0.275E3, 0.275G3

program output Code

Generation

We describe the lexemes for a token kind either via grammars or
via regular expressions.

program input
Hybrid Interpreter

Regular Expressions
In their simplest form, aegular expressionR must be one of

3.2 Lexical
.) o e asingle character
Characters occur in groups that have an “atomic” meaning in a lan-

guage. e ST, the concatenation of two other regular expressions
Such groups are callédkens A language may have many differ-)]
ent kinds of tokens. e S|T, the choice of two regular expressions

The string of characters that corresponds to a given token is called
alexeme

Basic Components — Lexical

Regular Expressions (cont.)

e Sx, 0 or more repetitions of a regular expression
— (known as the&kleene closurg

e (9), aregular expression within parentheses

Example: integers in most languages look sort of like this:
(++=)(0]1]2[3[45]6]7[8]9)*

But this isn’t quite right. Why not?

Common Extensions To Regular Expressions
e R+ denotes 1 or more repetitions of R
e R?denotes 0 or 1 occurrence of R

e RE denotes betweem andk occurrences oR

Common Extensions (cont.)

e [abc...] is short for(a|b|c|...), where only single characters
can appear between the

— The notationa — z is also allowed withir{], to denote a
range of consecutive characters.

e Quote characters liker’ that would otherwise be confused.

With these, we can reduce our description of integer lexemes to

("+'|-)?[0 — 9]+

What do the following regular expressions describe?
o (% 1x

o (0 1x)x

o (0x1x)+

e (00]01]10[11)%

What do the following regular expressions describe?

o Ox*1x

(0% 1)
o [01]+
(0001]10]11)

What do the following regular expressions describe?
e (0x1x

o (0 1x)x
o [01]4
o (00/01]10]11)%

What do the following regular expressions describe?
o Ox1x

o (0 1x)x
e [01]4
o (00[01[10[11)

What do the following regular expressions describe?
o (x1x

o (0 1x)x
o [01]4
e (00]01]10|11)x

Here are some descriptions of identifier lexemes in different lan-

guages.

e Pascal:
[a —zA — Z]la — zA — Z0 — 9]

e Cila—zA—Z]la—2zA—20—9]
e FORTRAN:[a — 2A — Z][a — 2A — Z0 — 9]}
Can you explain the differences?

What would be the lexemes for the reserved word “for” in C?
in Pascal?

Not all lexical conventions can be described via regular expres-

sions.

e For example, older languages such as FORTRAN and COBOL
had column dependencies.

e ALGOL (published form) used typesetting informatioh: was
an identifier, butf is a reserved word.

	Translation
	Phases of Translation
	Compilers
	Interpreters

	Lexical

