Functional Programming — Scheme

Steven Zell

Nov. 10, 2003

Contents 3. [Functions
T Scheme 1 4. [Cexical Scopp
T Dat@aTypPES . . o oooooee e e e e e 1 5. [Programming T Scheme
11 _afoms . . .« v v ovooe e e e
MIZ _Tists oo 1
(1.2 Expressions 2
21 GeneralForm. 2 11 Data Types
T27 QUOINY .« o v v v oo e e e e e 2
123 LISTOPB . « v o ooooe e e e e e 2 Datain Scheme is divided into
[1.24 Conditionals
(L3 Functions ” ; 1 om
M4 TexicalScopge v v v v v i it i i 3 2.[istd
[L.5 ProgramminginScheme 3
[2 Implementing LISP| 4
2.1 ImplementinglLists 4 1.1.1 atoms
211 ListCells 5

Atoms can be

e integers: 3,0

|3 Functional Programming Influences on C++

e real numbers: 3.14

Functional Programming « symbols: 'x, ‘abc

1. Overview — unguoted, these are variables
2. SML
3. Special symbols:

o #t, #f are booleans

4. [mplementing LISP

5. [Functional Programming Influences on G++

1.1.2 lists

General form of compound data is thet:

1 Scheme (list) ::= ({(item)})
Scheme is a dialect of LISRKSt Processinp (item) ::= (atom} | (list)
1. Data Typeks Examples:
0 @) (a 'b 'c) (a (a b 'c) ¢
2. [Expressions (((Ca)) b 'c)

Functional Programming — Scheme

e Although called “lists”, these are actually trees.

e Also called s-expressions

1.2.3 ListOps
Lists are manipulated with three basic operators:

e Ccons

Scheme is weakly typed. A list can mix different types of data: ® car

(a 123 (b 2.05))

1.2 Expressions
1.

2. [Quoting

3. [E0R
4. [Conditionals

1.2.1 General Form

General form of code is the parenthesized prefix expression:

(expr) ::= ((operatop {(item)})
(operatop ::= (item)

Examples:
(+ 5 3)
(* 2 (+ 53)

Note that the forms for data and code are actually the same.

e Easy to write Scheme programs that build and execute

scheme programs.
e Simple syntax

e Only one kind of compound data

1.2.2 Quoting

Suppose we want the data 4 3” instead of the valug.

e cdr

cons
cons prepends an item onto a list

e (cons 1 (2 3)) produceql 2 3)
e (cons (1) (2 3)) produceq(1l) 2 3)

car
car extracts the first element from a list

e (car (1 2 3) isl

e (car (1 2) (3 4) is(1 2)

cdr
cdr returns the list of all except the first element

o (cdr (1 23) is@ 3)
o (cdr (1 2) (3 4) is((3 4))

cons, car , andcdr correspondto SML's: |, hd, andtl .

Because expressions likear (cdr (car ...)))
othrem, they can be abbreviated:

e (cadr L) stands forcar (cdr (L))
e (cddr L) stands for(cdr (cdr (L))
e (caddr L) stands forcar (cdr (cdr (L))))

etc.

are com-

null?
null? tests a list to see if it is empty.

To indicate that we want the treated as an atom rather than as an (null? () is #t

operator, quote the list:
(quote (+ 5 3))

or

'+ 5 3)

e (null? (1 2) is #f
o (null? () is #f

Functional Programming — Scheme 3

1.2.4 Conditionals 1.4 Lexical Scope

(if P E 1 Ey) is the Scheme equivalent to SMLY jke SML, we can bind names to constant values in a limited scope:
if-then-else (let (x 1 E) (x 2 E) ...) E)

o (if (null? L) () (cdr L)) (define a 2)

— - (define b 3)
A more general form of conditional is (let ((a 4) (d 2)) (+ a b d))
(cond (P | E) (P2 Ey) ..(else E) (let ((a 4) (c (+ a b))) ¢)
e The predicated’; are evaluated, one after another, until one is)
not#f . What are the values of the let expressions?

e Then the correspondirtg; is returned.

1.5 Programming in Scheme

Test Operators Start with a simple list manipulator:

e (null? L) IsLempty? append should join two lists.
e (pair? X) IsXalist (a cons pair)? (append (1 2) (3 (4)) should return
(123 @4)

e (atom? X) IsXanatom?

e (number? X) Is X anumber?

e (symbol? X) Is X asymbol? e Note thatcons joins an item and a list:
e (equal? L M) Arel and M equal? (deep) — (cons (1 2) (3 (&) returns
e (eq? L M) ArelL and M equal? (shallow) (12 3 (4)

e (< X Y) Isnumber X< number Y?

(define (append x vy)
(cond ((null? x) vy)

1.3 Functions
(else (cons

Functions are declared viifine (car x)
(define (name (formalg) (expn) (append (cdr x) vy)
(define (abs x))
(if (> x 0) x (= x)))))
)

An alternate, and perhaps more interesting form, is:
(define name (function-valug)
(define pi 3.14159)

Functors
Functions are 1st Class Objects As in SML, much of the power of the language comes from the use
More generally, function values are written kasnbda expres- of higher-order functions.

sions

e (ambda ((formal$) (expn) e (map f L) appliesf to each element df, collecting the re-
sult into a list.
(define abs (map abs '(2 -4 -7)) returns(2 4 7)
(lambda (x) (if (> x 0) x (= x))))

Functional Programming — Scheme

Implementing map
Could be defined as

(define (map f L)
(if (null? L)
()
(cons (f (car L))
(map f (cdr L)))
)

e butmapis actually predefined in Scheme

e Predefinednap can apply to functions of different arity
(map + (2 -4 -7) (1 2 3))
(3 -2 -4)

returns

Another interesting h.o.f. ireduce

e (reduce f x (
(f x (f

vy)) computes

Un—1 Un)--.)))

v U2 ...

o ((f

e For example, we can define a summation funchipras

(define (sumAll x)
(reduce + 0 x))

reduce is implemented as

(define (reduceX f v)
(cond ((null? (cdr v)) (car v))
(else (f (car v)
(reduce f (cdr v))
)
)

(define (reduce f x v)
(cond ((null? v) x)
(else (f x (reduceX f v)))))

A vector dot product is defined as

Ty =Y xy;

Can you ussumAll , reduce , and/ormapto produce a dot pro-
duce function?

Association Lists
A common idiom in Scheme is thassociation list or a-list

e a list of pairs, which map keys to values

o first element of each pair is usually a symbol

(define people
(let ((edv '((name "Ed”) (id 123)))
(suev '((name "Sue”) (id 278)))

(billv "((name "Bill"”) (id 380))
)
‘((ed, edv) (sue, suev)
(bill, billv))))

(define projectl '((managered)

(staff (sue bill))))

(assoc x A) extracts the (first) pair keyed byin the a-listA.

(define (manager project)
(cadr (assoc’'manager project)))

(define (managerName project)

(cadr
(assoc 'name
(cadr
(assoc (manager project)
people
)
)
)))

2 Implementing LISP

LISP was originally envisioned as a LLL to implement a a List pro-
cessing HLL.

It offers some interesting insights into implementation of FP.

1. Implementing Lists

2. |Garbage Collectign

2.1

In LISP/Scheme, typically two separate memory pools

Implementing Lists

¢ storage for atoms

Functional Programming — Scheme 5

— contains no pointers to other objects
— may be subdivided by kind/size of atom

¢ A binding statement lik¢define ... or

* storage for lists let ((namel vall) ...(nameN valN) exp)

simply adds (name,value) pairs to the front of the envionment.

2.1.1 ListCells

A list is represented as a collection of cells: _
2.2 Garbage Collection

next

cel e FPLs use rely on shared data structures to make constructive

manipulation efficient.
element

of list e Their implementations therefore make heavy use of pointers.

e (car L) retrieves the pointer from the first part of the cell. « Automatic storage management (garbage collection) is essen-

e (cdr L) retrieves the pointer from the second part of the cell. tial.

e (cons H L) allocates a new cell, placingandL in the two

parts of the cell. Some non-FP languages (e.g., Java, Modula 3) use automatic
garbage collection as well.

(let ((edv '((name "Ed”) (id 123))) e Often these languages feature reference semantics.

(suev ’'((name "Sue”) (id 278)))

(billv '((name "Bill”) (id 380))) e Such languages usually do not havelelete command, so
) both garbage and dangling ponters are eliminated.

‘((ed ,edv) (sue ,suev) (bill ,billv))
[] o
\ \% 3 Functional Programming Influences on
C++

The influence of the functional style can be seen in the new standard
edJ \A \ C++ library, which is filled with higher-order functions:
sue
/ \ (tosue)llst<Student> cs355Roster;

?) ‘ void printName (const Student& s){
i l cout << s.name()<< endl;
me “Ed B 123 a

;

v~ | o

n

void printRoster () {
iterator start

Association lists are used heavily in the implementation of list<Student-::

LISP/Scheme. = cs355Roster.begin ();
list<Students::iterator stop
e Aspecial a-list, called thenvironment, contains the current list = cs355Roster.end ();
of bound variable names, associated with their values. for_each (start, stop, printName);

e Whenever the intepreter encounters a variable name, it evaluites
it as(assoc name Environment)

Functional Programming — Scheme

list<Student> univ;

Student updateGPA(Student s{)
Grades g = thisSemester.grades(s);
s.gpa = computeGPA(s.gpa, s.hours, g);
return s;

}

void reportCards (){
list<Students>::iterator start
= univ.begin ();
list<Students::iterator stop
= univ.end();
transform (start, stop,
start, updateGPA);

bool honors(const Student& s){
return s.gpa()> 3.5;

}

void selectHonors (){

list<Student-::iterator start

= univ.begin ();
list<Students::iterator stop

= univ.end();
list<Students::iterator toBeRemoved;
toBeRemoved =

removeif (start, stop, honors);
univ.erase (toBeRemoved, stop);

}

univ.erase (toBeRemoved, stop);

}

Note hownotl is used to generate a new function from an old one.

Objects can also simulate functions, and have the advantage of be-
ing fully 1st-class.

struct GPASelector
public unary_function<Student, bool>
{
typedef double argumenttype;
double limit;
GPASelector double lim)
{limit = lim;}

bool operator() (const Student& s){
return s.gpa()> limit;
}

s

void selectHonors{ouble gpa) {
list<Student-::iterator start
= univ.begin ();
list<Student-::iterator stop
= univ.end();
list<Students::iterator toBeRemoved;

GPASelector honors (gpa);
toBeRemoved =
removeif (start, stop,
notl (honors));
univ.erase (toBeRemoved, stop);

Unfortunately this removes the honors students instead of selecting them. NOtL is a true h.o.f. It takes a function as a parameter and pro-

bool honors(const Student& s){
return s.gpa()> 3.5;

}

void selectHonors (){
list<Students::iterator start
= univ.begin ();
list<Student>::iterator stop
= univ.end ();
list<Students::iterator toBeRemoved;
toBeRemoved =
removeif (start, stop,
notl (honors));

duces a new function (actually a simulating object).

template <class Predicate
class unary_negate

public unary_function<

Predicate :: argumenhame , bool>

{

Predicate pred;
public :
unary_.negate (Predicate p): pred(p)
{}
bool operator ()

(typename Predicate ::argumentime Xx)
{ return !pred(x); }
¥

template <class Predicate

Functional Programming — Scheme

UnaryFunction notl (Predicate pj
return unary.negatecPredicate-(p);

1

	Scheme
	Data Types
	atoms
	lists

	Expressions
	General Form
	Quoting
	List Ops
	Conditionals

	Functions
	Lexical Scope
	Programming in Scheme

	Implementing LISP
	Implementing Lists
	List Cells

	Garbage Collection

	Functional Programming Influences on C++

