Randomized Initialization Protocols for Packet Radio Networks *

Tatsuya Hayashi† Koji Nakano‡ Stephan Olariu‡

Abstract

The main contribution of this work is to propose efficient randomized initialization protocols for Packet Radio Networks (PRN, for short). As a result of the initialization protocol, the n stations of a PRN are assigned distinct integer IDs from 1 to n.

First, we show that if the number n of stations is known beforehand, the single-channel PRN can be initialized in $O(n)$ broadcast rounds with probability at least $1 - \frac{1}{n}$, regardless of whether or not the PRN has the collision detection (CD) capability.

We then go on to show that even if n is not known in advance, the single-channel PRN with CD can be initialized in $O(n)$ broadcast rounds with probability at least $1 - \frac{1}{n^2}$. Using this protocol as a stepping stone, we then present an initialization protocol for the k-channel PRN with CD that terminates in $O\left(\frac{n^k}{k}\right)$ broadcast rounds with probability at least $1 - \frac{1}{n^2}$, whenever $k \leq \frac{n}{\log n}$.

Finally, we look at the case where the CD capability is not present. Our first result in this scenario is to show that the well-known leader election problem can be solved on the single-channel PRN in $O((\log n)^2)$ broadcast rounds with probability at least $1 - \frac{1}{n^2}$. This leader election protocol allows us to design an initialization protocol for the single-channel PRN with no CD that terminates in $O(n)$ broadcast rounds with probability at least $1 - \frac{1}{n^2}$. We then discuss an initialization protocol for the k-channel PRN with no CD that terminates in $O\left(\frac{n^k}{k}\right)$ broadcast rounds with probability at least $1 - \frac{1}{n^2}$, whenever $k \leq \frac{n}{\log n}$.

AMS Subject Classification: 68W15, 68W20, 68W40.

1 Introduction

A Packet Radio Network (PRN, for short) \mathcal{S} consists of n radio transceivers, henceforth referred to as stations. The stations are identical and cannot be

*Work supported in part by the NSF grant CCR-9522093 and by ONR grant N00014-97-1-0526.
†Department of Electrical and Computer Engineering, Nagoya Institute of Technology, Showa-ku, Nagoya 466. JAPAN, nakano@elcom.nitech.ac.jp
‡Department of Computer Science, Old Dominion University, Norfolk, Virginia 23529, USA, olariu@cs.odu.edu
distinguished by serial or manufacturing number. We refer the reader to Figure 1 depicting a 10-station PRN.

The classical leader election problem asks to designate one of the station as leader. In other words, after performing the leader election protocol, exactly one station learns that it was elected leader, while the remaining stations learn the identity of the leader elected. The leader election problem is fundamental, for many other problems rely directly or indirectly on the presence of a leader in a network [4, 19, 20].

The initialization problem is to assign to each of the \(n \) stations in \(S \) an integer ID number in the range \([1, n]\) such that no two stations are assigned the same ID. The initialization problem is fundamental in both network design and in multiprocessor systems [4, 17].

![Figure 1: Illustrating a 10-station PRN.](image)

As customary, the time is assumed to be slotted and all the stations have a local clock that keeps (synchronous) time. Also, all broadcast operations are performed at time slot boundaries.

The stations are assumed to have the computing power of a usual laptop computer; in particular, they all run the same protocol and can generate random bits that provide “local data” on which the stations may perform computations. The stations communicate using \(k \) radio channels denoted by \(C(1), C(2), \ldots, C(k) \). We assume that in any time slot, a station can tune in to one such channel and/or broadcast on at most one (possibly the same) channel. A broadcast operation involves a data packet whose length is such that the broadcast operation can be completed within one time slot.

We employ two assumptions in terms of the capability of the system. In the PRN with collision detection (CD, for short), the status of a radio channel is:
• **NULL**: if no station broadcasts on the channel in the current time slot,

• **SINGLE**: if exactly one station broadcasts on the channel in the current time slot, and

• **COLLISION**: if two or more stations broadcast on the channel in the current time slot.

In the PRN with no collision detection the status of a radio channel is:

• **NULL**: if either no station broadcasts or two or more stations broadcast on the channel in the current time slot, and

• **SINGLE**: if exactly one station broadcasts on the channel in the current time slot.

Several workers have argued that from a practical standpoint the no CD assumption makes a lot of sense since in many situations, especially in the presence of noisy channels, the stations cannot distinguish between the no broadcast case and the collision of several packets that arises when several stations attempt to broadcast at once [5, 6]. On the other hand, many other radio or cellular networks including AMPS, GSM, ALOHA-net, as well as the well-known Ethernet are systems where collision detection is possible [1, 2, 7, 8, 9, 14].

Recent advances in wireless communications and mobile computing have exacerbated the need for efficient protocols for Packet Radio Networks. Indeed, a large number of such protocols have been reported in the literature [3, 11, 12, 16, 18]. However, many of these protocols function under the assumption that the n stations in the PRN have been initialized in advance. The highly non-trivial task of assigning the stations distinct ID numbers, i.e. initializing the stations, is often ignored in the literature. It is, therefore, of importance to design efficient initialization protocols for PRNs both in the case where the system has a collision detection capability and for the case where this capability is not present.

The main contribution of this work is to propose efficient randomized initialization protocols for Packet Radio Networks. To begin, we show that if the number n of stations is known in advance, the single-channel PRN can be initialized in $O(n)$ broadcast rounds with probability at least $1 - \frac{1}{2^n}$, regardless of whether or not the collision detection capability is present.

We then go on to address the initialization problem in the more realistic case where the number n of stations is not known ahead of time. We show that the single-channel PRN with CD can be initialized in $O(n)$ broadcast rounds with probability at least $1 - \frac{1}{2^n}$. We then generalize this result by showing that the k-channel PRN with CD can be initialized in $O(\frac{n}{k})$ broadcast rounds with probability at least $1 - \frac{1}{n}$, whenever $k \leq \frac{n}{\log n}$.

3
Next, we design a leader election protocol for the single-channel PRN with no CD that terminates in $O((\log n)^2)$ broadcast rounds with probability at least $1 - \frac{1}{n}$. This leader election protocol is key in designing an initialization protocol for the single-channel PRN that terminates in $O(n)$ broadcast rounds with probability at least $1 - \frac{1}{2^k}$. Using this protocol, we design an initialization protocol for the k-channel PRN with no CD that runs in $O(n/k)$ broadcast rounds with probability at least $1 - \frac{1}{n}$, provided that $k \leq \frac{n}{(\log n)^2}$.

The remainder of this extended abstract is organized as follows. Section 2 discusses the initialization problem for known n. Section 3 discusses the more realistic case where the number of stations in the PRN is not known beforehand. Finally, in Section 4 we address the problems of leader election, and initialization in the PRN with no collision resolution in case the number n of stations in not known beforehand.

2 Initializing the single-channel PRN for known n

We begin this section by reviewing basic probability theory results that are useful for analyzing the performance of our protocols. For a more detailed discussion of background material we refer the reader to [13, 15]. We then go on to discuss a simple initialization protocol for the single-channel PRN in case the number n of stations is known. Our protocol does not rely on collision detection and, therefore, works regardless of whether or not the PRN has collision detection capabilities.

Throughout, $\Pr[A]$ will denote the probability of event A. For a random variable X, $E[X]$ denotes the expected value of X. Let X be a random variable denoting the number of successes in n independent Bernoulli trials with parameters p and $1 - p$. It is well known that X has a binomial distribution and that for every r, $(0 \leq r \leq n),$

$$\Pr[X = r] = \binom{n}{r} p^r (1 - p)^{n-r}. \quad (1)$$

Further, the expected value of X is given by

$$E[X] = \sum_{r=0}^{n} r \cdot \Pr[X = r] = np. \quad (2)$$

To analyze the tail of the binomial distribution, we shall make use of the following estimates, commonly referred to as Chernoff bounds:

$$\Pr[X \leq (1 - \epsilon)E[X]] \leq e^{-\frac{\epsilon^2 E[X]}{2}} \quad (0 \leq \epsilon \leq 1). \quad (3)$$

$$\Pr[X \geq (1 + \epsilon)E[X]] \leq e^{-\frac{\epsilon^2 E[X]}{3}} \quad (0 \leq \epsilon \leq 1). \quad (4)$$
Consider a single-channel PRN where the number n of stations is known
to all the participants. Let $C(1)$ stand for the unique channel available. The
idea of our protocol is to assign ID numbers sequentially starting with 1.
The details are spelled out as follows:

Protocol Initialization-for-known-n

for $m \leftarrow n$ **down to** 1 **do**

repeat

each station broadcasts on channel $C(1)$ with probability $\frac{1}{m}$; (**(*)**)

until the status of channel $C(1)$ is SINGLE;

the station that has broadcast in the previous round is declared
the $(n - m + 1)$-th station;

endfor

The correctness of protocol **Initialization-for-known-n** being easily
seen, we now turn to the task of evaluating the number of broadcast rounds
it takes the protocol to terminate. We say that the current broadcast round
in step (***) is *successful* if the status of channel $C(1)$ is SINGLE. Let X
be the random variable denoting the number of stations broadcasting in a
given round. Then, by virtue of (1), at the end of this round the status of
the channel is SINGLE with probability

$$
\Pr[X = 1] = \left(\frac{m}{1} \right) \left(\frac{1}{m} \right)^1 \left(1 - \frac{1}{m} \right)^{m-1}
= \left(1 - \frac{1}{m} \right)^{m-1} > \frac{1}{e}.
$$

Clearly, the protocol **Initialization-for-known-n** requires n successful
rounds to terminate. Let Y be the random variable denoting the number
of successful rounds among the first $4en$ broadcast rounds in step (***) of
the protocol. It is clear that $E[Y] > 4n$. By virtue of (3) with $\epsilon = \frac{3}{4}$, we have

$$
\Pr[Y < n] < \Pr[Y \leq (1 - \frac{3}{4})E[Y]] \leq e^{-\frac{9}{32}E[Y]} < e^{-\frac{9}{8}n} < 2^{-\frac{9}{8}n} < \frac{1}{2^n}.
$$

We just proved that with probability at least $1 - \frac{1}{2^n}$ among the first $4en$
broadcast rounds there are at least n successful rounds. Moreover, our proto-

coloc does not rely on collision detection. Therefore, we have the following
result.

Lemma 2.1 Let S be an n-station, single-channel PRN with no collision de-
tection. If n is known beforehand, Protocol **Initialization-for-known-n**
terminates in $O(n)$ broadcast rounds with probability at least $1 - \frac{1}{2^n}$.

5
It is interesting to note that Lemma 2.1 asserts that if the number of stations in the PRN is known, for the purpose of initialization it does not matter whether the PRN has collision detection or not. In the remainder of the paper we shall see that if the number of station in the PRN is not known in advance the collision detection capability makes a difference.

3 Initializing the PRN with CD and unknown \(n \)

This section is devoted to presenting an initialization protocols for the PRN with CD, in the case where the number \(n \) of stations is not known beforehand. We begin by presenting an initialization protocol for the single-channel PRN that terminates in \(O(n) \) broadcast rounds with probability at least \(1 - \frac{1}{2^n} \). Next, we generalize this result to the case of the \(k \)-channel PRN with CD. Specifically, we discuss an initialization protocol for this case that terminates in \(O\left(\frac{n}{k}\right) \) broadcast rounds with probability at least \(1 - \frac{1}{n} \), whenever \(k \leq \frac{n}{\log n} \).

3.1 Initializing the single-channel PRN

In outline, our protocol partitions the stations into non-empty subsets \(\mathcal{P}_1 \) and \(\mathcal{P}_2 \). In turn, \(\mathcal{P}_2 \) is also partitioned into two non-empty subsets \(\mathcal{P}_2 \) and \(\mathcal{P}_3 \). The same partition is then applied to \(\mathcal{P}_3 \). In general, \(\mathcal{P}_{i-1} \) is partitioned into non-empty subsets \(\mathcal{P}_{i-1} \) and \(\mathcal{P}_i \). This procedure is repeated until, at some stage, some \(\mathcal{P}_i \) contains a single station. This station receives the ID of 1 and quits the protocol. After that, the same partition procedure is applied to \(\mathcal{P}_{i-1} \) and so on. This is then repeated until all stations in the PRN have been assigned IDs. In order to perform the partitioning above, we use the protocol \texttt{Partition-with-CD} whose details follow.

Protocol \\texttt{Partition-with-CD}

repeat

- each station selects 0 or 1 with probability \(\frac{1}{2} \);
- all the stations that selected 1 broadcast on channel C(1);
- let \(\text{Status}(1) \) be the resulting status of C(1);
- all the stations that selected 0 broadcast on channel C(1);
- let \(\text{Status}(0) \) be the resulting status of C(1)

until neither \(\text{Status}(1) \) nor \(\text{Status}(0) \) is NULL.

It is easy to see that protocol \texttt{Partition-with-CD} correctly partitions the set of stations into two non-empty subsets. We now present the details of our initialization protocol using \texttt{Partition-with-CD}. Each station maintains local variables \(l, L \) and \(N \). Let \(\mathcal{P}_i \) denote the set of stations whose local variable \(l \) has value \(i \). Notice that the collision detection capability allows
us to determine whether $|P_i| = 0$, $|P_i| = 1$, or $|P_i| \geq 2$. This is done, simply, by mandating the stations in P_i to broadcast and by recording the resulting status of the channel.

Protocol Initialization-with-CD

Every station sets $l \leftarrow L \leftarrow N \leftarrow 1$;

while $L \geq 1$ do

if $|P_L| = 1$ then

the unique station in P_L is declared the N-th station and
leaves the protocol;

$N \leftarrow N + 1$; $L \leftarrow L - 1$;

else

use protocol Partition-with-CD to partition P_L into two
non-empty sets P_L and P_{L+1};

$L \leftarrow L + 1$;

each station in P_L sets $l \leftarrow L$;

endif
endwhile

The correctness of protocol Initialization-with-CD being easily seen, we now turn to the task of evaluating the number of broadcast rounds it takes the protocol to terminate. To begin, the task of checking whether $|P_L| = 1$ can be done in one broadcast. Let us estimate how many times the protocol checks if $|P_L| = 1$. Note that in case $|P_L| = 1$ the unique station in P_L is assigned an ID and leaves the protocol. Thus, exactly n times the condition $|P_L| = 1$ must evaluate to “true” in the if statement. The protocol Partition-with-CD partitions a set of stations into two non-empty subsets. Hence, protocol Partition-with-CD must be executed exactly $n - 1$ times. Thus, exactly $n - 1$ times the condition $|P_L| = 1$ is “false” in the if statement. Therefore, the task of checking $|P_L| = 1$ in the if statement requires $2n - 1$ broadcasts.

Next, we evaluate the number of broadcast rounds involved in protocol Partition-with-CD. Suppose that m, $(m \geq 2)$, stations are to be partitioned into two non-empty sets using protocol Partition-with-CD. We say that an iteration of the repeat-until loop in protocol Partition-with-CD is successful if it succeeds in partitioning the set into two non-empty subsets. Let X be the random variable denoting the number of stations that selected a 1. Then, since $m \geq 2$, the probability of a successful iteration is

$$\Pr[1 \leq X \leq m - 1] = 1 - \Pr[X = 0] - \Pr[X = m] = 1 - \frac{1}{2^{m-1}} \geq \frac{1}{2}.$$

Since a successful iteration produces two non-empty sets, it is clear that Initialization-with-CD must perform, overall, $n - 1$ successful iterations. Let Y be the random variable denoting the number of successes among $8n$
Bernoulli trials, with parameter \(p = \frac{1}{2} \). It is clear that \(E[Y] = 4n \). By virtue of (3) with \(\epsilon = \frac{3}{4} \),

\[
\Pr[Y < n - 1] \leq \Pr[Y \leq (1 - \frac{3}{4})E[Y]] \leq e^{-\frac{9}{8}n} = 2^{-\frac{9}{8}n} < \frac{1}{2^n}.
\]

We just proved that with probability at least \(1 - \frac{1}{2^n} \), among the first \(8n \) iterations of the repeat-until loop in protocol Partition-with-CD there must exist at least \(n - 1 \) successful iterations. Thus, with probability at least \(1 - \frac{1}{2^n} \), Initialization-with-CD terminates in \(O(n) \) broadcast rounds.

Theorem 3.1 Even if \(n \) is not known beforehand, an \(n \)-station PRN with CD can be initialized in \(O(n) \) rounds with probability at least \(1 - \frac{1}{2^n} \).

Now, consider a PRN with \(m \) stations, where \(m \leq n \). For later reference, we now evaluate the probability that protocol Initialization-with-CD will take \(O(n) \) broadcast rounds to initialize the PRN. Let \(Y \) be the random variable defined above. Then, it is clear that

\[
\Pr[Y < m - 1] < \Pr[Y < n - 1] \leq e^{-\frac{9}{8}n} < 2^{-\frac{9}{8}n} < \frac{1}{2^n}.
\]

Corollary 3.2 Protocol Initialization-with-CD initializes an \(m \)-station PRN with CD and unknown \(m \), \(m \leq n \), in \(O(n) \) rounds with probability at least \(1 - \frac{1}{2^n} \).

3.2 Initializing the \(k \)-channel PRN with CD

In this subsection we present an efficient initialization protocol for the \(k \)-channel PRN when the number \(n \) of stations is not known beforehand.

Protocol Initialization-\(k \)-channel-PRN

Stage 1 Each station selects one of the channels at random. Let \(P_i \), \(1 \leq i \leq k \), denote the set of stations that selected channel \(C(i) \). For every \(i \), \(1 \leq i \leq k \), dedicate channel \(C(i) \) to \(P_i \) and use the protocol Initialization-with-CD to initialize \(P_i \). Let \(p_{i,j} \), \(1 \leq i \leq k, 1 \leq j \leq |P_i| \), denote the \(j \)-th station in \(P_i \). At the end of this stage, each station \(p_{i,j} \) knows its local ID number \(j \) within \(P_i \).

Stage 2 Compute the prefix-sums of \(|P_1|, |P_2|, \ldots, |P_k| \). That is, compute for every \(i \), \(1 \leq i \leq k \), the sum \(|P_1| + |P_2| + \cdots + |P_i| \). Next, for every \(i \), \(1 \leq i \leq k - 1 \), broadcast the value \(|P_1| + |P_2| + \cdots + |P_i| \) on channel \(C(i + 1) \). Now, each station \(p_{i,j} \), \(2 \leq i \leq k \), computes its ID whose value is \(|P_1| + |P_2| + \cdots + |P_i| + j \).

It is worth noting that Stage 1 uses the randomized protocol developed in Subsection 3.1, while Stage 2 uses a deterministic protocol inspired by
the well-known prefix sums algorithm for the PRAM [13]. We begin by evaluating the number of rounds involved in completing Stage 1. For this purpose, we show that no set P_i is likely to contain too many stations.

Fix a channel and let X be the random variable denoting the number of stations that selected that channel. It should be clear that $E[X] = \frac{2n}{k}$. By using the Chernoff bound in (4) with $\epsilon = 1$, we can bound the probability $\Pr[X \geq \frac{2n}{k}]$ that the channel was selected by $\frac{2n}{k}$ or more stations as follows:

$$\Pr[X \geq \frac{2n}{k}] \leq e^{-\frac{2n}{k}}.$$

Thus, the probability that some channel is chosen by at least $\frac{2n}{k}$ stations is less than $k \cdot e^{-\frac{2n}{k}}$. It follows that, with probability at least $1 - k \cdot e^{-\frac{2n}{k}}$, all the channels are chosen by fewer than $\frac{2n}{k}$ stations.

Let us assume that each of the k channels was selected by fewer than $\frac{2n}{k}$ stations. By Corollary 3.2, protocol Initialization-with-CD initializes an m-station, single-channel PRN, where $m < \frac{2n}{k}$, in $O(\frac{n}{k})$ rounds with probability at least $1 - e^{-\frac{2n}{k}}$.

Note, however, that before the protocol can advance to Stage 2, it must check whether each of the k instances of Initialization-with-CD running in the k channels has finished executing. For this purpose, the execution of Initialization-with-CD is suspended every, say, 10 rounds. Using one broadcast in this suspended round, every station that has not yet been assigned a local ID number broadcasts on channel C(1). If the status of C(1) is NULL, we know that Stage 1 must be complete and Stage 2 may begin.

The above discussion implies that with probability at least

$$1 - k \cdot e^{-\frac{2n}{k}} - ke^{-\frac{2n}{k}} \geq 1 - 2k \cdot e^{-\frac{2n}{k}}$$

Stages 2 is ready to begin at the end of $O(\frac{n}{k})$ broadcast rounds.

Recall that at the end of Stage 1, every station p_{i1}, $(1 \leq i \leq k)$, knows the number $|P_i|$ of stations in P_i. Thus, Stage 2 can, in principle, use the stations p_{i1}, $(1 \leq i \leq k)$, to compute the prefix-sums of $|P_1|, |P_2|, \ldots, |P_k|$. If every set P_i, $(1 \leq i \leq k)$, is non-empty, the prefix sums are computed by a trivial implementation of the prefix-sums algorithm for the PRAM [13]. However, in our case, some of the P_i's may be empty and, consequently, some of the stations p_{i1} may not exist. Thus, we need to adapt the prefix-sums algorithm for the PRAM to work even if some of the stations do not exist.

The protocol to compute the prefix-sums is executed in a recursive manner. After the execution of the prefix-sums, for every i, $(1 \leq i \leq k)$, the following conditions are satisfied:

(ps1) Every existing station p_{i1}, knows the prefix-sum $|P_1| + |P_2| + \cdots + |P_i|$,
(ps2) A leader is elected in $P_1 \cup P_2 \cup \cdots \cup P_i$ if at least one of P_1, P_2, \ldots, P_i is non-empty, and
(ps3) The elected leader knows the value of the sum \(|P_1| + |P_2| + \cdots + |P_i|\).

Our prefix-sums protocol is as follows. If \(k = 1 \), elect station \(p_{i,1} \) as the
leader of \(P_i \). Clearly, station \(p_{i,1} \) knows the prefix sum \(|P_i|\). Thus above
conditions are satisfied.

If \(k \geq 2 \), partition \(G = \{P_1, P_2, \ldots, P_k\} \) into groups \(G_1 = \{P_1, P_2, \ldots, P_{\frac{k}{2}}\} \) and \(G_2 = \{P_{\frac{k}{2}+1}, P_{\frac{k}{2}+2}, \ldots, P_k\} \). Recursively compute the prefix sums in \(G_1 \) and \(G_2 \) using channels \(C(1), C(2), \ldots, C(\frac{k}{2}) \) and \(C(\frac{k}{2}+1), C(\frac{k}{2}+2), \ldots, C(k) \), respectively.

By the inductive hypothesis, when these prefix sums protocols terminate the
conditions (ps1)–(ps3) above are satisfied in both \(G_1 \) and \(G_2 \). Notice that since every channel was chosen by fewer than \(\frac{2n}{k} \) stations, both \(G_1 \) and \(G_2 \) must be nonempty and by (ps2) each of them must have a leader. The
leader in \(G_1 \) broadcasts the value \(S_1 = |P_1| + |P_2| + \cdots + |P_{\frac{k}{2}}| \) on channel
\(C(1) \). Every station in \(G_2 \) monitors channel \(C(1) \) and updates the value of its
prefix sum by adding the value broadcast to the value it stores (i.e., its local
prefix sum within \(G_2 \)). It is easy to see that the value obtained corresponds
to the correct prefix sum within \(G \). Finally, the leader in \(G_2 \) broadcasts the
sum \(S_2 = |P_{\frac{k}{2}+1}| + |P_{\frac{k}{2}+2}| + \cdots + |P_k| \) on channel \(C(1) \). The leader in \(G_1 \)
adds together the sums \(S_1 \) and \(S_2 \) and is elected the leader of \(G \). Note that
the stations in \(G_1 \) do not have to do any updating, for the prefix-sum within
\(G_1 \) is also that within \(G \). If no station belongs to \(G_1 \), every station in \(G_2 \)
can detect it, because the status of \(C(1) \) is NULL when the leader in \(G_1 \)
broadcasts \(S_1 \). In this case, the prefix-sum within \(G_2 \) is also that within \(G \).
Further, the leader of \(G_2 \) becomes that of \(G \). Thus, conditions (ps2) and
(ps3) are satisfied.

It is clear that the prefix sums protocol we just described performs two
broadcast rounds excluding the recursive execution. Since the depth of re-
cursion is \(\lceil \log k \rceil \), the protocol performs \(O(\log k) \) broadcast rounds.

After executing the prefix sums protocol, each station \(p_{i,1} \) broadcasts the
value \(|P_1| + |P_2| + \cdots + |P_i| \) on channel \(C(i+1) \). Every station \(p_{i+1,j} \) monitors
channel \(C(i+1) \) and computes \(|P_1| + |P_2| + \cdots + |P_i| + j - 1 \), which is its
ID number. Consequently, Stage 2 terminates in \(O(\log k) \) rounds. Thus, we
have proved the following result.

Theorem 3.3 Even if the number \(n \) of stations is not known beforehand,
the \(k \)-channel PRN with \(CD \) can be initialized in \(O(\frac{n}{k} + \log k) \) rounds with
probability at least \(1 - k \cdot e^{\frac{-2n}{3k}} \).

Assuming \(k \leq \frac{n}{3 \log n} \), we have

\[
k \cdot e^{\frac{-2n}{3k}} = \frac{n}{3 \log n} \cdot e^{-2 \log n} < n \cdot \frac{1}{n^{2.88}} < \frac{1}{n},
\]

and the number of rounds is \(O(\frac{n}{k} + \log k) = O(\frac{n}{k}) \). Consequently, we have
the following result.
Corollary 3.4 Even if the number n of stations is not known, the k-channel PRN with CD can be initialized in $O\left(\frac{n}{k}\right)$ rounds with probability at least $1 - \frac{1}{n}$, whenever $k \leq \frac{n}{3\log n}$.

4 Initializing the PRN with no CD and unknown n

The main goal of this section is to address the problems of:

- leader election, and
- initialization

on the PRN with no collision resolution in case the number n of stations in not known beforehand.

4.1 Leader election on the PRN with no CD for unknown n

This subsection presents a leader election protocol on the PRN with no CD. The details of the protocol follow.

Protocol Election-with-no-CD

for $i \leftarrow 0$ to ∞ do

for $j \leftarrow 0$ to i do

each station broadcasts on channel C(1) with probability $\frac{1}{2^j}$;

if the status of C(1) is SINGLE then

the station broadcasting is declared the leader and

the protocol terminates;

endif

end for

end for

It is clear that protocol Election-with-no-CD terminates with the correct election of a leader. Let s be the unique integer satisfying $2^s \leq n < 2^{s+1}$. We say that a broadcast round is good if $j = s$, that is, if $2^j \leq n < 2^{j+1}$. A good round succeeds in finding a leader with probability at least

$$\left(\frac{n}{1} \right) \left(\frac{1}{2^s} \right) \left(1 - \frac{1}{2^s} \right)^{n-1} \geq 2^s \frac{1}{2^s} \left(1 - \frac{1}{2^s} \right)^{n-1} \geq \left(1 - \frac{1}{2^s} \right)^{2^s+1-1} > \frac{1}{e^2}.$$

Thus, the first t good rounds fail with probability at most

$$\left(1 - \frac{1}{e^2} \right)^t \leq e^{-\frac{t}{e^2}}. \quad \text{(since } 1 + x \leq e^x)$$

In other words, with probability at least $1 - e^{-\frac{t}{e^2}}$ a leader is elected in t good rounds. On the other hand, the first $s+t+1$ iterations of the outer for-loop,
corresponding to \(i = 0, 1, \ldots, s, s + 1, \ldots, s + t \) contain \(t \) good rounds. It follows that the first \(1 + 2 + \cdots + (s + t + 1) = O((s + t)^2) \) broadcast rounds contain \(t \) good rounds. Since \(s = \lceil \log n \rceil \) we have proved the following result.

Theorem 4.1 Protocol Election-with-no-CD elects a leader in \(O(t^2 + (\log n)^2) \) broadcast rounds with probability at least \(1 - \frac{1}{2^n} \).

Choosing \(t = e^2 \log n \) and \(t = e^2 \sqrt{n} \), we obtain the following important result.

Corollary 4.2 Protocol Election-with-no-CD elects a leader in \(O((\log n)^2) \) broadcast rounds with probability at least \(1 - \frac{1}{n} \) or in \(O(n) \) broadcast rounds with probability at least \(1 - \frac{1}{2^n} \).

4.2 Initializing the PRN with no CD and unknown \(n \)

Suppose that the stations in a subset \(\mathcal{P} \) of \(\mathcal{S} \) broadcast on channel \(C(1) \). If the PRN can detect collisions, then every station can determine whether \(|\mathcal{P}| = 0, |\mathcal{P}| = 1, \) or \(|\mathcal{P}| \geq 2 \). On the other hand, if the PRN does not have this capability, then one can only determine whether \(|\mathcal{P}| = 1 \) or \(|\mathcal{P}| \neq 1 \).

However, once a leader is elected in \(\mathcal{S} \), the PRN with no CD can simulate that with CD in \(O(1) \) rounds. In other words, the PRN with no CD can determine whether \(|\mathcal{P}| = 0, |\mathcal{P}| = 1, \) or \(|\mathcal{P}| \geq 2 \). The details follow.

First, the leader \(p \) broadcast to all stations whether \(p \in \mathcal{P} \) or not. After that, the following protocol is executed:

Case 1: \(p \in \mathcal{P} \). Since \(|\mathcal{P}| \geq 1 \), it is sufficient to check whether \(|\mathcal{P}| = 1 \) or \(|\mathcal{P}| \geq 2 \). The stations in \(\mathcal{P} \) broadcast on channel \(C(1) \). If the status \(C(1) \) is SINGLE, then \(|\mathcal{P}| = 1 \), otherwise, it must be that \(|\mathcal{P}| \geq 2 \).

Case 2: \(p \notin \mathcal{P} \). By mandating the stations in \(\mathcal{P} \) to broadcast on channel \(C(1) \), we can determine if \(|\mathcal{P}| = 1 \) or \(|\mathcal{P}| \neq 1 \). Similarly, by mandating the stations in \(\mathcal{P} \cup p \) to broadcast, we can determine if \(|\mathcal{P}| = 0 \) or \(|\mathcal{P}| \neq 0 \). These two results combined can determine whether \(|\mathcal{P}| = 0, |\mathcal{P}| = 1, \) or \(|\mathcal{P}| \geq 2 \) (i.e. \(|\mathcal{P}| \neq 0 \) and \(|\mathcal{P}| \neq 1 \)).

Thus, three broadcast rounds are sufficient to simulate the PRN with CD. It follows that, if a leader is elected beforehand, a round of the single-channel PRN with CD can be simulated by three rounds of the PRN with no CD. By using the leader election protocol in the previous subsection, we have the following result.

Theorem 4.3 If a protocol running \(T \) rounds on the single-channel PRN with CD, it can be simulated in \(O(T + t^2 + (\log n)^2) \) rounds on the single-channel PRN with no CD with probability at least \(1 - O(e^{-t^2}) \).
Theorems 3.1 and 4.3 combined imply that the single-channel \(n \)-station PRN with no CD can be initialized in \(O(n + t^2 + (\log n)^2) \) rounds with probability at least \(1 - O\left(\frac{1}{2\pi} + e^{-\frac{k}{2t}}\right) \). Choosing \(t = e^2 \sqrt{n} \), we have the following

Corollary 4.4 The single-channel, \(n \)-station PRN with no CD can be initialized in \(O(n) \) broadcast rounds with probability at least \(1 - \frac{1}{2\pi} \).

Next, we discuss an initialization protocol for the \(k \)-channel PRN with no CD. For this purpose, we will implement Initialization-\(k \)-channel-PRN on the \(k \)-channel PRN with no CD. The reader will recall that protocol \(\text{Initialization-}k\text{-channel-PRN} \) executes \(k \) instances of \(\text{Initialization-with-CD} \), one in each of the \(k \) channels.

Instead, we execute the no CD version of \(\text{Initialization-with-CD} \) in Corollary 4.4. Thus, all the \(P_i \), \(1 \leq i \leq k \), can be initialized in \(O\left(\frac{n}{k}\right) \) broadcast rounds with probability at least \(1 - \frac{k}{2\sqrt{n}} \). Further, we need to check whether the initialization of all the \(P_i \)s is finished. Similarly to the implementation on the PRN with CD, this can be done by suspending the initialization in every, say, 10 rounds. Using one broadcast round in this suspended round, we will check whether all stations are locally initialized.

For this purpose, we need to find a leader of \(P \) in advance. By Corollary 4.2, this can be done in \(O((\log n)^2) \) time with probability at least \(1 - \frac{1}{n} \). Consequently, Stage 1 of \(\text{Initialization-}k\text{-channel-PRN} \) can be implemented on the PRN with no CD in \(O\left(\frac{n}{k} + (\log n)^2\right) \) broadcast rounds with probability at least \(1 - O\left(\frac{k}{2\sqrt{n}} + \frac{1}{n}\right) \).

The prefix-sums computation executed in Stage 2 involves no broadcast causing collision, it can also executed on the PRN with no CD in \(O(\log k) \) rounds.

As a consequence, Stages 1 and 2 can be implemented on the PRN with no CD to run in \(O\left(\frac{n}{k} + (\log n)^2 + \log k\right) \) rounds with probability \(1 - O\left(\frac{k}{2\sqrt{n}} + \frac{1}{n}\right) \). Assuming \(k \leq \frac{n}{4(\log n)^2} \), we have

Theorem 4.5 The \(k \)-channel PRN with no CD can be initialized in \(O\left(\frac{n}{k}\right) \) rounds with probability \(1 - O\left(\frac{1}{n}\right) \), whenever \(k \leq \frac{n}{4(\log n)^2} \).

References

