3 Methods for Polygon Storage

1. Explicit - oldest and simplest, stored as an array of polygons
 a) no b) yes c) no d) yes
 Inefficiency - redundancy in points

2. Pointer to Vertex List - space efficient
 a) yes b) yes c) no d) yes
 Most efficient storage

3. Pointer to Edge List (aka Explicit Edge) - less efficient
 a) yes b) no c) yes d) yes
 Smaller and less vertices

→ 1. \[P_1 = (x_1,y_1,z_1, x_2,y_2,z_2, ... x_n,y_n,z_n) \]
 \[P_2 = (x_2,y_2,z_2, ... x_n,y_n,z_n) \]
 Sides are straight lines, has area, is flat
 Must be closed, at least 3 points

→ 2. \[V_{\text{LIST}} = (x_1,y_1,z_1, x_2,y_2,z_2, ... x_n,y_n,z_n) \]
 \[P_1 = (V_1, V_2, V_3, ..., V_n) \]
 Every vertex is mesh linked once
 \(V_i \) - index into a vertex list
 Traded off ease for storage efficiency

→ 3. \[V_{\text{LIST}} = (x_1,y_1,z_1, x_2,y_2,z_2, ... x_n,y_n,z_n) \]
 \[E_1 = (V_1, V_2, P_1, P_2) \]
 \(E_1 \) - 4 ints
 \[P_1 = (E_1, E_2, E_3) \]
 \(P_1 \) - variable
 Vertices and polygons if outside \(P_2 = \emptyset \)
 (belongs to either 1 or 2 poly)
 \(\text{poly} \) = series of edges

no method for dealing with shared vertices!