Shading

Compute intensity at each pixel based on light sources mitigated by many things.

\[I_{\text{Total}} = \frac{m_1 I_p + m_2 I_p + \ldots + m_n I_p + m_a I_a}{\text{each point source ambient light}} \]

\(m \) - mitigating coeff.

Too hard to use area light sources (mapped as point light sources)

Points are at infinite distance (parallel rays) for direction only

Infinite distance - caimes merge to single value

\(m_a I_a \) - cheat for the inter-reflection (like light reflected off the walls, floors, etc...)

Real intense reflections are modeled as point sources

\(m_a I_a \) - objects "glow" - artificial

- Set arbitrarily \(\to \) gets tweaked by visual observation

"It's hard to recognize porn, but I know it when I see it..."

Review equations for Intensity, reduction for next class
Shading Basic Illumination Model

\[I_r = I_a k_a O_k + I_p k \cos(\alpha) \text{fatt} \text{OR} \]

(also \(I_a, I_p \))

- \(I_a \) - ambient (fake thing "glow")
- \(I_p \) - point light source
- \(k \) - material property
 - mitigating coefficient \(0 \leq k < 1 \)
 - smooth close to 1, pitted (scatter) less than 1
 - determined empirically
- \(\cos \alpha \) - angle of light from light sources
- \(\text{fatt} \) - attenuation coefficient \(0 < \text{fatt} < 1 \)
 - (light intensity diminishes as squared dist)
 - \(\frac{1}{d^2} \) but too steep for aesthetics, play with \(A, B \) to adjust

\(O_{R,k} \) - diffuse color coefficient \(0 \leq 1 \)
 - \(R \) and one of the primary colors that is the color of the object
 - red obj under green light \(\rightarrow \) black obj
 - \(O_{R,k} = 1 \) for red object \((O_a \cdot O_g = \Phi) \)

This is why we use 3-byte color
Do this after clipping / visible surface determination

If done properly, shadows will occur naturally (ray tracing)
- point light sources will be blocked

Special effects impact
- Specular reflection (shiny apple example)
 - Shiny surface - all light reflected at point
 - around light angle \(\cos(\alpha) \) close to 1
 - material property \(n \) (shinier object \(\rightarrow \) small n)
 - \(\cos(\alpha) \)
 - choose a limit for spec reflection \(\text{e.g.} \cos(\alpha) > 0.9 \)
 - must occur under white light.
 - Phong model (basis on empirical data)
 - apply this first, use it instead of Basic III model \((I_a \rightarrow I_{ap}) \)
Polygon Shading - (interpolated shading)
- hard to make edges go away
 - calculated once - use for all facets
 \[I_p \]
 - only thing changes is \(\cos(\alpha) \)
 - facets will be treated constantly across extent
 - need to interpolate across polygon surface
 - average surface normal at shared vertices

Two methods

Gouraud shading
- only calculate \(I \) for each vertex
- interpolate down each edge \(I_2 \) double interpolation
- interpolate along scan line \(I_3 \) interpolation

\(\Rightarrow \) lots "cheaper" than computing each pixel using BIM

Problems:
 shading of surface will change just by rotation
 - attitude problem

\(\Rightarrow \) Vertex illumination calculation must be done before clipping, back face culling
 - need this info to perform interpolations (same for Phong)

Phong shading - more calc for each pixel
- interpolate surface normal values instead of Illuminations
 and use BIM

Shading is hard, but necessary, for realism

"mock-banding for eye"

non-representational

"half vertex"